The development and application of operational polarimetric radar (PR) in China is still in its infancy. In this study, an operational PR quantitative precipitation estimation (QPE) algorithm is suggested based on data for PR hydrometeor classification and local drop size distribution (DSD). Even though this algorithm performs well for conventional rainfall events, in which hourly rainfall accumulations are less than 50 mm, the capability of a PR to estimate extremely heavy rainfall remains unclear. The proposed algorithm is used for nine different types of rainfall events that occurred in Guangzhou, China, in 2016 and for an extremely heavy rainfall event that occurred in Guangzhou on 6 May 2017. It performs well for all data of these nine rainfall events and for light-to-moderate rain (hourly accumulation <50 mm) in this extremely heavy rainfall event. However, it severely underestimated heavy rain (>50 mm) and the extremely heavy rain at stations where total rainfall exceeded 300 mm within 5 h in this extremely heavy rainfall event. To analyze the reasons for underestimation, a rain microphysics retrieval algorithm is presented to retrieve Dm and Nw from the PR measurements. The DSD characteristics and the factors affecting QPE are analyzed based on Dm and Nw. The results indicate that compared with statistical DSD data in Yangjiang (estimators are derived from these data), the average raindrop diameter during this rainfall event occurred on 6 May 2017 was much smaller and the number concentration was higher. The algorithm underestimated the precipitation with small and midsize particles, but overestimated the precipitation with midsize and large particles. Underestimations occurred when Dm and Nw are both very large, and the severe underestimations for heavy rain are mainly due to these particles. It is verified that some of these particles are associated with melting hail. Owing to the big differences in DSD characteristics, R(KDP, ZDR) underestimates most heavy rain. Therefore, R(AH), which is least sensitive to DSD variations, replaces R(KDP, ZDR) to estimate precipitation. This improved algorithm performs well even for extremely heavy rain. These results are important for evaluating S-band Doppler radar polarization updates in China.
The quality of radar data is crucial for its application. In particular, before radar mosaic and quantitative precipitation estimation (QPE) can be conducted, it is necessary to know the quality of polarimetric parameters. The parameters include the horizontal reflectivity factor, ZH; the differential reflectivity factor, ZDR; the specific differential phase, KDP; and the correlation coefficient, ρHV. A novel radar data quality index (RQI) is specifically developed for the Chinese polarimetric radars. Not only the influences of partial beam blockages and bright band upon radar data quality, but also those of bright band correction performance, signal-to-noise ratio, and non-precipitation echoes are considered in the index. RQI can quantitatively describe the quality of various polarimetric parameters. A new radar mosaic QPE algorithm based on RQI is presented in this study, which can be used in different regions with the default values adjusted according to the characteristics of local radar. RQI in this algorithm is widely used for high-quality polarimetric radar data screening and mosaic data merging. Bright band correction is also performed to errors of polarimetric parameters caused by melting ice particles for warm seasons in this algorithm. This algorithm is validated by using nine rainfall events in Guangdong province, China. Major conclusions are as follows. ZH, ZDR, and KDP in bright band become closer to those under bright band after correction than before. However, the influence of KDP correction upon QPE is not as good as that of ZH and ZDR correction in bright band. Only ZH and ZDR are used to estimate precipitation in the bright band affected area. The new mosaic QPE algorithm can improve QPE performances not only in the beam blocked areas and the bright band affected area, which are far from radars, but also in areas close to the two radars. The sensitivity tests show the new algorithm can perform well and stably for any type of precipitation occurred in warm seasons. This algorithm lays a foundation for regional polarimetric radar mosaic precipitation estimation in China.
The ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts (ECMWF) in the summers from 2015 to 2020 was used to compare and analyze the features of the precipitable water vapor (PWV) observed by six ground-based Global Navigation Satellite System (GNSS) meteorology (GNSS/MET) stations in the Yunnan–Guizhou Plateau. The correlation coefficients of the two datasets ranged between 0.804 and 0.878, the standard deviations ranged between 4.686 and 7.338 mm, and the monthly average deviations ranged between −4.153 and 9.459 mm, which increased with the altitude of the station. Matching the quality-controlled ground precipitation data with the PWV in time and space revealed that most precipitation occurred when the PWV was between 30 and 65 mm and roughly met the normal distribution. We used the vertical integral of divergence of moisture flux (∇p) and S-band Doppler radar networking products combined with the PWV to study the convergence and divergence process and the water vapor delivery conditions during the deep convective weather process from August 24 to 26, 2020, which can be used to analyze the real-time observation capability and continuity of PWV in small-scale and mesoscale weather processes. Furthermore, the 1 h precipitation and the cloud top temperature (ctt) data at the same site were used to demonstrate the effect of PWV on the transit of convective weather systems from different time−space scales.
For quantitative precipitation estimation (QPE) based on polarimetric radar (PR) and rain gauges (RGs), the quality of the radar data is crucial for estimation accuracy. This paper proposes a combined radar quality index (CRQI) to represent the quality of the radar data used for QPE and an algorithm that uses CRQI to improve the QPE performance. Nine heavy rainfall events that occurred in Guangdong Province, China, were used to evaluate the QPE performance in five contrast tests. The QPE performance was evaluated in terms of the overall statistics, spatial distribution, near real-time statistics, and microphysics. CRQI was used to identify good-quality data pairs (i.e., PR-based QPE and RG observation) for correcting estimators (i.e., relationships between the rainfall rate and the PR parameters) in real-time. The PR-based QPE performance was improved because estimators were corrected according to variations in the drop size distribution, especially for data corresponding to 1.1 mm < average Dm < 1.4 mm, and 4 < average log10 Nw < 4.5. Some underestimations caused by the beam broadening effect, excessive beam height, and partial beam blockages, which could not be mitigated by traditional algorithms, were significantly mitigated by the proposed algorithm using CRQI. The proposed algorithm reduced the root mean square error by 17.5% for all heavy rainfall events, which included three precipitation types: convective precipitation (very heavy rainfall), squall line (huge raindrops), and stratocumulus precipitation (small but dense raindrops). Although the best QPE performance was observed for stratocumulus precipitation, the biggest improvement in performance with the proposed algorithm was observed for the squall line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.