Warburg effect is a dominant phenotype of most cancer cells. Here we show that this phenotype depends on its environment. When cancer cells are under regular culture condition, they show Warburg effect; whereas under lactic acidosis, they show a nonglycolytic phenotype, characterized by a high ratio of oxygen consumption rate over glycolytic rate, negligible lactate production and efficient incorporation of glucose carbon(s) into cellular mass. These two metabolic modes are intimately interrelated, for Warburg effect generates lactic acidosis that promotes a transition to a nonglycolytic mode. This dual metabolic nature confers growth advantage to cancer cells adapting to ever changing microenvironment.
SUMMARY The Metadherin gene (MTDH) is prevalently amplified in breast cancer and associated with poor prognosis but its functional contribution to tumorigenesis is poorly understood. Using mouse models representing different subtypes of breast cancer, we demonstrated that MTDH plays a critical role in mammary tumorigenesis by regulating oncogene-induced expansion and activities of tumor-initiating cells (TICs), whereas it is largely dispensable for normal development. Mechanistically, MTDH supports the survival of mammary epithelial cells (MECs) under oncogenic/stress conditions by interacting with and stabilizing Staphylococcal nuclease domain-containing 1 (SND1). Silencing MTDH or SND1 individually or disrupting their interaction compromises tumorigenenic potential of TICs in vivo. Finally, this functional significance of MTDH-SND1 interaction is supported by clinical analysis of human breast cancer samples.
Elongation factor-2 kinase (eEF-2 kinase), also known as Ca 2+ / calmodulin-dependent kinase III, regulates protein synthesis by controlling the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in glioblastoma and other malignancies, yet its role in neoplasia is uncertain. Recent evidence suggests that autophagy plays an important role in oncogenesis and that this can be regulated by mammalian target of rapamycin (mTOR). Because eEF-2 kinase lies downstream of mTOR, we studied the role of eEF-2 kinase in autophagy using human glioblastoma cell lines. Knockdown of eEF-2 kinase by RNA interference inhibited autophagy in glioblastoma cell lines, as measured by light chain 3 (LC3)-II formation, acidic vesicular organelle staining, and electron microscopy. In contrast, overexpression of eEF-2 kinase increased autophagy. Furthermore, inhibition of autophagy markedly decreased the viability of glioblastoma cells grown under conditions of nutrient depletion. Nutrient deprivation increased eEF-2 kinase activity and decreased the activity of S6 kinase, suggesting an involvement of mTOR pathway in the eEF-2 kinase regulation of autophagy. These results suggest that eEF-2 kinase plays a regulatory role in the autophagic process in tumor cells; and eEF-2 kinase is a downstream member of the mTOR signaling; eEF-2 kinase may promote cancer cell survival under conditions of nutrient deprivation through regulating autophagy. Therefore, eEF-2 kinase may be a part of a survival mechanism in glioblastoma and targeting this kinase may represent a novel approach to cancer treatment. (Cancer Res 2006; 66(6): 3015-23)
Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. N G -monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H + -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H + -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H + -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H + -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H + -ATPase activity.
Inhibition of the survival kinase Akt can trigger apoptosis, and also has been found to activate autophagy, which may confound tumor attack. In this study, we investigated regulatory mechanisms through which apoptosis and autophagy were modulated in tumor cells subjected to Akt inhibition by MK-2206, the first allosteric small molecule inhibitor of Akt to enter clinical development. In human glioma cells, Akt inhibition by MK-2206 or siRNA-mediated attenuation strongly activated autophagy, whereas silencing of eukaryotic elongation factor-2 (eEF-2) kinase, a protein synthesis regulator, blunted this autophagic response. Suppression of MK-2206-induced autophagy by eEF-2 silencing was accompanied by a promotion of apoptotic cell death. Similarly, siRNA-mediated inhibition of eEF-2 kinase potentiated the efficacy of MK-2206 against glioma cells. Together, these results showed that blunting autophagy and augmenting apoptosis by inhibition of eEF-2 kinase could modulate the sensitivity of glioma cells to Akt inhibition. Our findings suggest that targeting eEF-2 kinase may reinforce the antitumor efficacy of Akt inhibitors such as MK-2206. Cancer Res; 71(7); 2654-63. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.