The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed.
The absence of two-dimensional (2D) van der Waals (vdW) ferromagnetic crystals with both above-room-temperature strong intrinsic ferromagnetism and large perpendicular magnetic anisotropy (PMA) severely hinders practical applications of 2D vdW crystals in next-generation low-power magnetoelectronic and spintronic devices. Here, we report a vdW intrinsic ferromagnetic crystal Fe3GaTe2 that exhibits record-high above-room-temperature Curie temperature (Tc, ~350-380 K) for known 2D vdW intrinsic ferromagnets, high saturation magnetic moment (40.11 emu/g), large PMA energy density (~4.79 × 105 J/m3), and large anomalous Hall angle (3%) at room temperature. Such large room-temperature PMA is better than conventional widely-used ferromagnetic films like CoFeB, and one order of magnitude larger than known 2D vdW intrinsic ferromagnets. Room-temperature thickness and angle-dependent anomalous Hall devices and direct magnetic domains imaging based on Fe3GaTe2 nanosheet have been realized. This work provides an avenue for room-temperature 2D ferromagnetism, electrical control of 2D ferromagnetism and promote the practical applications of 2D-vdW-integrated spintronic devices.
Electronic skin (e-skin) has been under the spotlight due to great potential for applications in robotics, human-machine interfaces, and healthcare. Meanwhile, triboelectric nanogenerators (TENGs) have been emerging as an effective approach to realize self-powered e-skin sensors. In this work, bioinspired TENGs as self-powered e-skin sensors are developed and their applications for robotic tactile sensing are also demonstrated. Through the facile replication of the surface morphology of natural plants, the interlocking microstructures are generated on tribo-layers to enhance triboelectric effects. Along with the adoption of polytetrafluoroethylene (PTFE) tinny burrs on the microstructured tribo-surface, the sensitivity for pressure measurement is boosted with a 14-fold increase. The tactile sensing capability of the TENG e-skin sensors are demonstrated through the characterizations of handshaking pressure and bending angles of each finger of a bionic hand during handshaking with human. The TENG e-skin sensors can also be utilized for tactile object recognition to measure surface roughness and discern hardness. The facile fabrication scheme of the self-powered TENG e-skin sensors enables their great potential for applications in robotic dexterous manipulation, prosthetics, human-machine interfaces, etc.
On‐skin electrodes function as an ideal platform for collecting high‐quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on‐skin electrodes. With continuous development and great promise for practical applications, on‐skin electrodes are playing an increasingly important role in EP monitoring and human–machine interfaces (HMI). In this review, the latest progress in the development of on‐skin electrodes and their integrated system is summarized. Desirable features of on‐skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on‐skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on‐skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on‐skin electrodes and their integrated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.