Spinal cord injury (SCI) is a destructive event in central nervous system (CNS) with the hallmark of deficits in neuronal function. Phoenixin-14 (PNX-14) is a reproductive peptide that also has neuroprotective effects. However, the role of PNX-14 in SCI has not yet been studied. In this study, we firstly investigated the effects of PNX-14 on the recovery of neurological dysfunction and microglial polarization in a SCI mice model. We demonstrated that PNX-14 improved the recovery of neurological dysfunction with increased Basso Mouse Scale (BMS) scores, reduced lesion area volume and Evans blue (EB) dye extravasation. PNX-14 alleviated neuronal apoptosis and neuroinflammation in mice underwent SCI. In vitro co-culture assay proved that PNX-14 protected neurons injury in response to LPS- activated BV-2 cells. PNX-14 suppressed the LPS- induced microglia M1 phenotype polarization with decreased expression of M1-associated markers (CD16 and iNOS) and increased expression of M2-associated markers (CD206 and Arg1). PNX-14 also suppressed LPS- caused decrease in anti-inflammatory cytokines TGF-β, IL-10, and IL-13, as well increase in pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in BV2 cells. PNX-14 treatment caused increased PTEN expression and decreased p-Akt expression in BV2 cells against LPS induction. While inhibition of PTEN by SF1670 reversed the effects of PNX-14 on LPS- induced phenotypic transition of BV2 cells. Taken together, we found that PNX-14 exerted protective effects on neurological dysfunction and inflammation in SCI mice through modulating microglial polarization via PTEN/Akt signaling pathway.
Hospital Acquired Pneumonia (HAP) is one of the most common complications and late causes of death in TBI patients. Targeted prevention and treatment of HAP are of great significance for improving the prognosis of TBI patients. In the previous clinical observation, we found that folic acid treatment for TBI patients has a good effect on preventing and treating HAP. We conducted this retrospective cohort study to demonstrate what we observed by selecting 293 TBI patients from two medical centers and analyzing their hospitalization data. The result showed that the incidence of HAP was significantly lower in TBI patients who received folic acid treatment (44.1% vs. 63.0%, p = 0.012). Multivariate logistic regression analysis showed that folic acid treatment was an independent protective factor for the occurrence of HAP in TBI patients (OR = 0.418, p = 0.031), especially in high-risk groups of HAP, such as the old (OR: 1.356 vs. 2.889), ICU (OR: 1.775 vs. 5.996) and severe TBI (OR: 0.975 vs. 5.424) patients. At the same time, cohort studies of HAP patients showed that folic acid also had a good effect on delaying the progression of HAP, such as reducing the chance of tracheotomy (26.1% vs. 50.8%, p = 0.041), and reduced the length of hospital stay (15 d vs. 19 d, p = 0.029) and ICU stay (5 d vs. 8 d, p = 0.046). Therefore, we believe that folic acid treatment in TBI patients has the potential for preventing and treating HAP, and it is worthy of further clinical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.