H. pylori infection induces the overexpression of TRAF1 in gastric epithelial cells. The upregulation of TRAF1 plays an antiapoptotic role in H. pylori -infected gastric cells and may contribute to the gastric carcinogenesis.
AIMTo study the impact on cleavage of tumor necrosis factor receptor-associated factor 1 (TRAF1) regulated by Helicobacter pylori (H. pylori).METHODSCleavage of TRAF1 was detected by western blotting in the human gastric cancer cell line AGS following treatment with an apoptosis inducer. Cleavage of TRAF1 mediated by caspase was examined in vitro using specific caspase inhibitors. The effect of the COOH-terminal TRAF1 fragment on gastric cell apoptosis during H. pylori infection was measured using flow cytometry. The impact of H. pylori infection on TRAF1 cleavage was detected in the presence of apoptosis inducer. The roles of H. pylori virulence factors that may regulate TRAF1 cleavage were analyzed using isogenic cagA-, vacA- and cagE-null mutants.RESULTSTRAF1 was found to be cleaved in AGS cells treated with the apoptosis inducer, and caspase-8 was the major caspase involved in the cleavage of TRAF1. The COOH-terminal TRAF1 fragment significantly induced cell apoptosis (P < 0.05) as well as promoted H. pylori-induced cell apoptosis (P < 0.05). H. pylori infection was found to significantly inhibit the cleavage of TRAF1 and to inhibit the activation of caspase-8 in the presence of the apoptosis inducer at specific infection times and different cell/bacteria ratios. We also found that the effects of cagE- and cagA-null mutants on the inhibition of TRAF1 cleavage and activation of caspase-8 were significantly attenuated, compared with wild-type H. pylori, in the presence of the apoptosis inducer, showing that the virulence factor CagA was mainly involved in the inhibition of TRAF1 cleavage.CONCLUSIONH. pylori infection significantly inhibits the cleavage of TRAF1 via a CagA-dependent mechanism, which would increase the relative amounts of full-length TRAF1 and exert an antiapoptotic effect on H. pylori-infected cells.
Helicobacter pylori (H. pylori) is a gram-negative pathogen classified as a class I carcinogen. The H. pylori urease B subunit (UreB) and heat shock protein A (HspA) are two important vaccine candidate antigens. In this study, we evaluated the immunogenicity and immunoprotective effect of the attenuated Shigella vector vaccine SH02 expressing the UreB-HspA fusion protein of H. pylori in a mouse model. Oral SH02 with or without subcutaneous injection of rUreB-HspA induced antigen-specific serum IgG, mucosal sIgA, and T cells immune response. Subcutaneous injection of the candidate antigen rUreB-HspA enhanced the level of serum antigen-specific IgG antibodies (p < 0.0001) and the levels of IgG1/IgG2a/IgG2b subtypes. In addition, injection boost also increased the proportion of spleen antigen-specific CD4+CD154+ T cells (p < 0.001), and the proportion of CD4+CD154+ T cells that secrete IFN-γ and IL-17A. Following the H. pylori challenge, the levels of H. pylori colonization in the two experimental groups (Groups A and B) significantly reduced compared with the control group (p < 0.001), indicating that the candidate vaccine yielded a preventive effect of anti-H.pylori infection. Compared with the non-subcutaneous booster injection group (Group A), the subcutaneous booster injection group (Group B) exhibited less gastric inflammation, but there was no significant difference in the level of colonization (p > 0.05). These results lay a foundation for the development of a vaccine against H. pylori and the optimization of immunization methods and procedures to prevent H. pylori infection.
Helicobacter pylori (H. pylori), heat-shock protein A (HspA), is a bacterial heat-shock chaperone that serves as a nickel ion scavenging protein. Ni2+ is an important co-factor required for the maturation and enzymatic activity of H. pylori urease and [NiFe] hydrogenase, both of which are key virulence factors for pathogen survival and colonization. HspA is an important target molecule for the diagnosis, treatment, and immune prevention of H. pylori. In this work, HspA was truncated into five fragments to determine the location of an antigen immunodominant peptide. A series of overlapping, truncated 11-amino-acid peptides in immunodominant peptide fragments were synthesized chemically and screened by ELISA. The immunogenicity and antigenicity of the screened epitope peptides were verified by ELISA, Western blot, and lymphocyte proliferation tests. Two novel B-cell epitopes were identified, covering amino acids 2–31 of HspA, which are HP11 (2–12; KFQPLGERVLV) and HP19 (18–28; ENKTSSGIIIP). The antiserum obtained from HP11-KLH and HP19-KLH immunized mice can bind to naive HspA in H. pylori SS2000, rHspA expressed in E. coli, and the corresponding GST fusion peptide. Among HspA seropositive persons, the seropositive rates of HP11 and HP19 were 21.4% and 33.3%, respectively. Both of the B-cell epitopes of HspA are highly conserved epitopes with good antigenicity and immunogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.