Background Quercus liaotungensis Koidz. is an ecologically and economically important tree species widely distributed in Northern China. However, the effective assessment, utilization, and protection of Q. liaotungensis resources remain unexplored. Methods In total, 120 samples obtained from 12 Q. liaotungensis populations of Northern China were investigated for genetic diversity and structure using 19 simple sequence repeat (SSR) primer pairs. Results The total number of alleles detected was 293, the average number of effective allele (Ne) was 6.084, the genetic differentiation coefficient (Fst) was 0.033, and the mean observed heterozygosity (Ho) and expected heterozygosity (He) were 0.690 and 0.801, respectively. Moreover, analysis of molecular variance (AMOVA) showed a 5.5% genetic variation among 12 Q. liaotungensis populations, indicating that a high level of genetic diversity and a low degree of genetic differentiation among Q. liaotungensis populations. STRUCTURE and cluster analysis divided the 12 Q. liaotungensis populations into the following three subpopulations: Bashang Plateau subpopulation (SH), Liaodong Peninsula subpopulation (NC), and Loess Plateau subpopulation (other 10 populations). The cluster analysis based on 19 climatic factors was consistent with the genetic structure. A positive correlation was found between genetic distance and geographical distance (r = 0.638, p = 0.028) by the Mantel test, and two boundaries were found among the 12 Q. liaotungensis populations by the Barrier analysis, indicating that Q. liaotungensis populations existed isolated by geographical distance and physical barrier. Conclusion This study suggests that geographical isolation, physical barrier, climatic types, and natural hybridization promote the formation of genetic structures, which can contribute to future protection and genetic improvement of Q. liaotungensis.
The performance index of overall photochemistry (PItotal) is widely used in photosynthesis research, but the PItotal interspecies differences are unclear. To this end, seeds of Quercus liaotungensis from 10 geographical provenances were planted in two different climate types. Two years later, leaf relative chlorophyll content (SPAD) and chlorophyll a fluorescence transient of seedlings were measured. Meanwhile, the environmental factors of provenance location, including temperature, precipitation, solar radiation, wind speed, transpiration pressure, and soil properties, were retrieved to analyze the trends of PItotal among geographic provenance. The results showed that, in each climate type, there was no significant difference in SPAD and electron transfer status between PSII and PSI, but PItotal was significantly different among geographic provenances. The major internal causes of PItotal interspecies differences were the efficiency of electronic transfer to final PSI acceptor and the number of active reaction centers per leaf cross-section. The main external causes of PItotal interspecies differences were precipitation of the warmest quarter, solar radiation intensity in July, and annual precipitation of provenance location. PItotal had the highest correlation with precipitation of the warmest quarter of origin and could be fitted by the Sine function. The peak location and fluctuating trend of precipitation—PItotal fitted curve were different in two climate types, largely due to the difference of precipitation and upper soil conductivity in the two test sites. Utilizing the interspecific variation and trends of PItotal might be a good strategy to screen high and stable photosynthetic efficiency of Q. liaotungensis provenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.