Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.
A novel silver nanoparticles (AgNPs)/chitosan composite dressing with asymmetric wettability surfaces was successfully prepared via a simple two-step method for biomedical applications as wound healing materials. First, AgNPs were assembled into the chitosan sponge which was prepared by lyophilization process. Then one side of the sponge was modified by a thin layer of stearic acid. The incorporation of AgNPs into chitosan dressing could enhance the antibacterial activity against drug-sensitive and drug-resistant pathogenic bacteria. The asymmetric surface modification endows the dressing with both highly hydrophobic property and inherent hydrophilic nature of chitosan. The hydrophobic surface of the dressing shows waterproof and antiadhesion for contaminant properties, whereas the hydrophilic surface preserves its water-absorbing capability and efficiently inhibits the growth of bacteria. Furthermore, the AgNPs/chitosan composite dressing displays improved moisture retention and blood clotting ability compared to the unmodified dressings. Cytocompatibility test evaluated in vitro and in a wound infection model illustrates the nontoxic nature of the composite dressing. More importantly, the in vivo wound healing model evaluation in mice reveals that the asymmetric AgNPs/chitosan dressing promotes the wound healing and accelerates the reepithelialization and collagen deposition. The silver accumulation in mice body treated by the composite dressing is far lower than that of the clinically used Acasin nanosilver dressing treated mice. This work indicates the huge potential of the novel AgNPs/chitosan wound dressing with asymmetrical wettability for clinical use.
Phytic acid, which is a naturally occurring component that is widely found in many plants, can strongly bond toxic mineral elements in the human body, because of its six phosphate groups. Some of the metal ions present the property of bonding with phytic acid to form insoluble coordination complexes aggregations, even at room temperature. Herein, a superhydrophobic cotton fabric was prepared using a novel and facile nature-inspired strategy that introduced phytic acid metal complex aggregations to generate rough hierarchical structures on a fabric surface, followed by PDMS modification. This superhydrophobic surface can be constructed not only on cotton fabric, but also on filter paper, polyethylene terephthalate (PET) fabric, and sponge. Ag, Fe, Ce, Zr, and Sn are very commendatory ions in our study. Taking phytic acid-Fe-based superhydrophobic fabric as an example, it showed excellent resistance to ultraviolet (UV) irradiation, high temperature, and organic solvent immersion, and it has good resistance to mechanical wear and abrasion. The superhydrophobic/superoleophilic fabric was successfully used to separate oil/water mixtures with separation efficiencies as high as 99.5%. We envision that these superantiwetting fabrics, modified with phytic acid-metal complexes and PDMS, are environmentally friendly, low cost, sustainable, and easy to scale up, and thereby exhibit great potentials in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.