Convolutional neural networks (CNNs) have shown great performance as general feature representations for object recognition applications. However, for multi-label images that contain multiple objects from different categories, scales and locations, global CNN features are not optimal. In this paper, we incorporate local information to enhance the feature discriminative power. In particular, we first extract object proposals from each image. With each image treated as a bag and object proposals extracted from it treated as instances, we transform the multi-label recognition problem into a multi-class multi-instance learning problem. Then, in addition to extracting the typical CNN feature representation from each proposal, we propose to make use of ground-truth bounding box annotations (strong labels) to add another level of local information by using nearest-neighbor relationships of local regions to form a multi-view pipeline. The proposed multi-view multiinstance framework utilizes both weak and strong labels effectively, and more importantly it has the generalization ability to even boost the performance of unseen categories by partial strong labels from other categories. Our framework is extensively compared with state-of-the-art handcrafted feature based methods and CNN based methods on two multi-label benchmark datasets. The experimental results validate the discriminative power and the generalization ability of the proposed framework. With strong labels, our framework is able to achieve state-of-the-art results in both datasets.
Multi-instance multi-label (MIML) learning has many interesting applications in computer visions, including multi-object recognition and automatic image tagging. In these applications, additional information such as bounding-boxes, image captions and descriptions is often available during training phrase, which is referred as privileged information (PI). However, as existing works on learning using PI only consider instance-level PI (privileged instances), they fail to make use of bag-level PI (privileged bags) available in MIML learning. Therefore, in this paper, we propose a two-stream fully convolutional network, named MIML-FCN+, unified by a novel PI loss to solve the problem of MIML learning with privileged bags. Compared to the previous works on PI, the proposed MIML-FCN+ utilizes the readily available privileged bags, instead of hard-to-obtain privileged instances, making the system more general and practical in real world applications. As the proposed PI loss is convex and SGDcompatible and the framework itself is a fully convolutional network, MIML-FCN+ can be easily integrated with stateof-the-art deep learning networks. Moreover, the flexibility of convolutional layers allows us to exploit structured correlations among instances to facilitate more effective training and testing. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed MIML-FCN+, outperforming state-of-the-art methods in the application of multi-object recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.