Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.
BackgroundAbove-ground biomass (AGB) is a basic agronomic parameter for field investigation and is frequently used to indicate crop growth status, the effects of agricultural management practices, and the ability to sequester carbon above and below ground. The conventional way to obtain AGB is to use destructive sampling methods that require manual harvesting of crops, weighing, and recording, which makes large-area, long-term measurements challenging and time consuming. However, with the diversity of platforms and sensors and the improvements in spatial and spectral resolution, remote sensing is now regarded as the best technical means for monitoring and estimating AGB over large areas.ResultsIn this study, we used structural and spectral information provided by remote sensing from an unmanned aerial vehicle (UAV) in combination with machine learning to estimate maize biomass. Of the 14 predictor variables, six were selected to create a model by using a recursive feature elimination algorithm. Four machine-learning regression algorithms (multiple linear regression, support vector machine, artificial neural network, and random forest) were evaluated and compared to create a suitable model, following which we tested whether the two sampling methods influence the training model. To estimate the AGB of maize, we propose an improved method for extracting plant height from UAV images and a volumetric indicator (i.e., BIOVP). The results show that (1) the random forest model gave the most balanced results, with low error and a high ratio of the explained variance for both the training set and the test set. (2) BIOVP can retain the largest strength effect on the AGB estimate in four different machine learning models by using importance analysis of predictors. (3) Comparing the plant heights calculated by the three methods with manual ground-based measurements shows that the proposed method increased the ratio of the explained variance and reduced errors.ConclusionsThese results lead us to conclude that the combination of machine learning with UAV remote sensing is a promising alternative for estimating AGB. This work suggests that structural and spectral information can be considered simultaneously rather than separately when estimating biophysical crop parameters.Electronic supplementary materialThe online version of this article (10.1186/s13007-019-0394-z) contains supplementary material, which is available to authorized users.
Leaf area index (LAI) and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ) and RADARSAT-2. The objectives of this study were (1) to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs) and radar polarimetric parameters (RPPs), (2) , p < 0.01) were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat using multisource remote sensing data.
Phenotyping under field environmental conditions is often considered as a bottleneck in crop breeding. Unmanned aerial vehicle high throughput phenotypic platform (UAV-HTPP) mounted with multi-sensors offers an efficiency, non-invasive, flexible and low-cost solution in large-scale breeding programs compared to ground investigation, especially where measurements are time-sensitive. This study was conducted at the research station of the Xiao Tangshan National Precision Agriculture Research Center of China. Using the UAV-HTPP, RGB and multispectral images were acquired during four critical growth stages of maize. We present a method of extracting plant height (PH) at the plot scale using UAV-HTPP based on the spatial structure of the maize canopy. The core steps of this method are segmentation and spatial Kriging interpolation based on multiple neighboring maximum pixels from multiple plants in a plot. Then, the relationships between the PH extracted from imagery collected using UAV-HTPP and the ground truth were examined. We developed a semi-automated pipeline for extracting, analyzing and evaluating multiple phenotypic traits: canopy cover (CC), normalized vegetation index (NDVI), PH, average growth rate of plant height (AGRPH), and contribution rate of plant height (CRPH). For these traits, we identify genotypic differences and analyze and evaluate dynamics and development trends during different maize growth stages. Furthermore, we introduce a time series data clustering analysis method into breeding programs as a tool to obtain a novel representative trait: typical curve. We classified and named nine types of typical curves of these traits based on curve morphological features. We found that typical curves can detect differences in the genetic background of traits. For the best results, the recognition rate of an NDVI typical curve is 59%, far less than the 82.3% of the CRPH typical curve. Our study provides evidence that the PH trait is among the most heritable and the NDVI trait is among the most easily affected by the external environment in maize.
Plant height (PH) is a key factor in maize ( Zea mays L.) yield, biomass, and plant architecture. We investigated the PH of diverse maize inbred lines (117 temperate lines, 135 tropical lines) at four growth stages using unmanned aerial vehicle high-throughput phenotypic platforms (UAV-HTPPs). We extracted PH data using an automated pipeline based on crop surface models and orthomosaic model. The correlation between UAV and manually measured PH data reached 0.95. Under temperate field conditions, temperate maize lines grew faster than tropical maize lines at early growth stages, but tropical lines grew faster at later growth stages and ultimately became taller than temperate lines. A genome-wide association study identified 68 unique quantitative trait loci (QTLs) for seven PH-related traits, and 35% of the QTLs coincided with those previously reported to control PH. Generally, different QTLs controlled PH at different growth stages, but eight QTLs simultaneously controlled PH and growth rate at multiple growth stages. Based on gene annotations and expression profiles, we identified candidate genes controlling PH. The PH data collected by the UAV-HTPPs were credible and the genetic mapping power was high. Therefore, UAV-HTPPs have great potential for use in studies on PH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.