Silicon photonics have attracted significant interest because of their potential in integrated photonics components and all-dielectric meta-optics elements. One major challenge is to achieve active control via strong photon–photon interactions, i.e. optical nonlinearity, which is intrinsically weak in silicon. To boost the nonlinear response, practical applications rely on resonant structures such as microring resonators or photonic crystals. Nevertheless, their typical footprints are larger than 10 μm. Here, we show that 100 nm silicon nano-resonators exhibit a giant photothermal nonlinearity, yielding 90% reversible and repeatable modulation from linear scattering response at low excitation intensities. The equivalent nonlinear index is five-orders larger compared with bulk, based on Mie resonance enhanced absorption and high-efficiency heating in thermally isolated nanostructures. Furthermore, the nanoscale thermal relaxation time reaches nanosecond. This large and fast nonlinearity leads to potential applications for GHz all-optical control at the nanoscale and super-resolution imaging of silicon.
Two-dimensional ternary materials are attracting widespread interest because of the additional degree of freedom available to tailor the material property for a specific application. An In 1−x Sn x Se phototransistor possessing tunable ultrahigh mobility by Sn-doping engineering is demonstrated in this study. A striking feature of In 1−x Sn x Se flakes is the reduction in the oxide phase compared to undoped InSe, which is validated by spectroscopic analyses. Moreover, first-principles density functional calculations performed for the In 1−x Sn x Se crystal system reveal the same effective mass when doped with Sn atoms. Hence, because of an increased lifetime owing to the enhanced crystal quality, the carriers in In 1−x Sn x Se have higher mobility than in InSe. The internally boosted electrical properties of In 1−x Sn x Se exhibit ultrahigh mobility of 2560 ± 240 cm 2 V −1 s −1 by suppressing the interfacial traps with substrate modification and channel encapsulation. As a phototransistor, the ultrathin In 1−x Sn x Se flakes are highly sensitive with a detectivity of 10 14 Jones. It possesses a large photoresponsivity and photogain (V g = 40 V) as high as 3 × 10 5 A W −1 and 0.5 × 10 6 , respectively. The obtained results outperform all previously reported performances of InSe-based devices. Thus, the doping-engineered In 1−x Sn x Se-layered semiconductor finds a potential application in optoelectronics and meets the demand for faster electronic technology.
Tuning the optical and electrical properties by stacking different layers of two-dimensional (2D) materials enables us to create unusual physical phenomena. Here, we demonstrate an alternative approach to enhance charge separation and alter physical properties in van der Waals heterojunctions with type-II band alignment by using thin dielectric spacers. To illustrate our working principle, we implement a hexagonal boron nitride (h-BN) sieve layer in between an InSe/GeS heterojunction. The optical transitions at the junctions studied by photoluminescence and the ultrafast pump–probe technique show quenching of emission without h-BN layers exhibiting an indirect recombination process. This quenching effect due to strong interlayer coupling was confirmed with Raman spectroscopic studies. In contrast, h-BN layers in between InSe and GeS show strong enhancement in emission, giving another degree of freedom to tune the heterojunction property. The two-terminal photoresponse study supports the argument by showing a large photocurrent density for an InSe/h-BN/GeS device by avoiding interlayer charge recombination. The enhanced charge separation with h-BN mediation manifests a photoresponsivity and detectivity of 9 × 102 A W–1 and 3.4 × 1014 Jones, respectively. Moreover, a photogain of 1.7 × 103 shows a high detection of electrons for the incident photons. Interestingly, the photovoltaic short-circuit current is switched from positive to negative, whereas the open-circuit voltage changes from negative to positive. Our proposed enhancement of charge separation with 2D-insulator mediation, therefore, provides a useful route to manipulate the physical properties of heterostructures and for the future development of high-performance optoelectronic devices.
Multifunctional lanthanide-doped upconversion nanoparticles (UCNPs) have spread their wings in the fields of flexible optoelectronics and biomedical applications. One of the ongoing challenges lies in achieving UCNP-based nanocomposites, which enable a continuous-wave (CW) laser action at ultralow thresholds. Here, gold sandwich UCNP nanocomposites [gold (Au1)–UCNP–gold (Au2)] capable of exhibiting lasing at ultralow thresholds under CW excitation are demonstrated. The metastable energy-level characteristics of lanthanides are advantageous for creating population inversion. In particular, localized surface plasmon resonance-based electromagnetic hotspots in the nanocomposites and the huge enhancement of scattering coefficient for the formation of coherent closed loops due to multiple scattering facilitate the process of stimulated emissions as confirmed by theoretical simulations. The nanocomposites are subjected to stretchable systems for enhancing the lasing action (threshold ∼ 0.06 kW cm–2) via a light-trapping effect. The applications in bioimaging of HeLa cells and antibacterial activity (photothermal therapy) are demonstrated using the newly designed Au1–UCNP–Au2 nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.