Cancer stem cells (CSCs), or tumor-initiating cells, are a small subset of cancer cells with the capacity for self-renewal and differentiation, which have been shown to drive tumor initiation, progression, and metastasis in many types of cancer. Moreover, therapeutic regimens, such as cisplatin and radiation were reported to induce the enrichment of CSCs, thereby conferring chemoresistance on cancer cells. Therefore, therapeutic targeting of CSCs represents a clinical challenge that needs to be addressed to improve patient outcome. In this context, the effectiveness of pan or class-I histone deacetylase (HDAC) inhibitors in suppressing the CSC population is especially noteworthy in light of the new paradigm of combination therapy. Evidence suggests that this anti-CSC activity is associated with the ability of HDAC inhibitors to target multiple signaling pathways at different molecular levels. Beyond chromatin remodeling via histone acetylation, HDAC inhibitors can also block key signaling pathways pertinent to CSC maintenance. Especially noteworthy is the ability of different HDAC isoforms to regulate the protein stability and/or activity of a series of epithelial-mesenchymal transition (EMT)-inducing transcription factors, including HIF-1α, Stat3, Notch1, β-catenin, NF-κB, and c-Jun, each of which plays a critical role in regulating CSCs. From the translational perspective, these mechanistic links constitute a rationale to develop isoform-selective HDAC inhibitors as anti-CSC agents. Thus, this review aims to provide an overview on the roles of HDAC isoforms in maintaining CSC homeostasis via distinct signaling pathways independent of histone acetylation.
This study is aimed at the pharmacological exploitation of α-tocopheryl succinate (1) to develop potent anti-adhesion agents. Considering the structural cooperativity between the phytyl chain and the carboxylic terminus in determining the anti-adhesion activity, our structural optimization led to compound 5 ([2-(4,8-dimethyl-non-1-enyl)-2,5,7,8-tetramethyl-chroman-6-yloxy]-acetic acid), which exhibited an-order-of-magnitude higher potency than 1 in blocking the adhesion of 4T1 metastatic breast cancer cells to extracellular matrix proteins (IC 50 , 0.6 μM versus 10 μM). Evidence indicates that the ability of compound 5 to block cell adhesion and migration was attributable to its effect on disrupting focal adhesion and actin cytoskeletal integrity by facilitating the degradation of focal adhesion kinase. Interactions between tumor cells and the ECM in the tumor microenvironment have been increasingly recognized as critical modulators of the metastatic potential of tumor cells. Consequently, the ability of compound 5 to block such interactions provides a unique pharmacological tool to shed light onto mechanisms that govern cell adhesion and tumor metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.