This paper presents a content-centric transmission design in a cloud radio access network (cloud RAN) by incorporating multicasting and caching. Users requesting a same content form a multicast group and are served by a same cluster of base stations (BSs) cooperatively. Each BS has a local cache and it acquires the requested contents either from its local cache or from the central processor (CP) via backhaul links. We investigate the dynamic content-centric BS clustering and multicast beamforming with respect to both channel condition and caching status. We first formulate a mixed-integer nonlinear programming problem of minimizing the weighted sum of backhaul cost and transmit power under the quality-ofservice constraint for each multicast group. Theoretical analysis reveals that all the BSs caching a requested content can be included in the BS cluster of this content, regardless of the channel conditions. Then we reformulate an equivalent sparse multicast beamforming (SBF) problem. By adopting smoothed ℓ 0 -norm approximation and other techniques, the SBF problem is transformed into the difference of convex (DC) programs and effectively solved using the convex-concave procedure algorithms. Simulation results demonstrate significant advantage of the proposed content-centric transmission. The effects of heuristic caching strategies are also evaluated.
Index TermsCloud radio access network (Cloud RAN), caching, multicasting, content-centric wireless networks, sparse beamforming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.