In order to solve the basic problem of high-temperature sintering of molybdenum carbide restricting the efficient construction of molybdenum carbide nanostructures and the full play of hydrogen evolution performance, this article studies the preparation of nano molybdenum carbide/boron nitrogen codoped two-dimensional carbon composite structure catalysts and the electrochemical hydrogen evolution reaction performance. Based on the self-assembly process of gelatin molecules on the surface of a two-dimensional layered boric acid crystal template, a new strategy for constructing a high-performance electrochemical hydrogen evolution reaction catalyst based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure (η-MoC@ BN-CSs) was established. The experimental results show that the overpotential of hydrogen evolution reaction based on molybdenum carbide/boron nitrogen codoped two-dimensional nanocarbon composite structure catalyst is 159 mV, which is slightly higher than 67 mV of commercial Pt/C catalyst, but lower than the reported literature value in the list. The Tafel slope is 68 mV·dec−1, which is slightly higher than that of the commercial Pt/C catalyst (40 mV·dec−1) and the reference value (58 mV·dec−1), but lower than those of other reported literature values in the list, indicating that the molybdenum carbide/boron nitrogen codoped two-dimensional carbon nanocomposites have excellent catalytic performance under alkaline conditions. Conclusion. This kind of two-dimensional nanocomposite structure shows platinum-like catalytic activity when used as an electrochemical hydrogen evolution catalyst in alkaline electrolyte. It has better reaction kinetics and better stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.