Our textbook image of organelles has changed. Instead of revealing isolated cellular compartments, the picture now emerging shows organelles as largely interdependent structures that can communicate through membrane contact sites (MCSs). MCSs are sites where opposing organelles are tethered but do not fuse. MCSs provide a hybrid location where the tool kits of two different organelles can work together to perform vital cellular functions, such as lipid and ion transfer, signaling, and organelle division. Here, we focus on MCSs involving the endoplasmic reticulum (ER), an organelle forming an extensive network of cisternae and tubules. We highlight how the dynamic ER network regulates a plethora of cellular processes through MCSs with various organelles and with the plasma membrane.
Mitochondria cannot be generated de novo; they must grow, replicate their genome, and divide in order to be inherited to each daughter cell during mitosis. Mitochondrial division is a structural challenge that requires a massive remodeling of membrane morphology 1–3. Although division factors differ across organisms, the need for multiple constriction steps and a dynamin-related protein (Drp1, Dnm1 in yeast) has been conserved 4–6. In mammalian cells, mitochondrial division has been shown to proceed with at least two sequential constriction steps: 1. endoplasmic reticulum (ER) and actin collaborate to generate constrictions suitable for Drp1 assembly; 2. Drp1 further constricts membranes until fission occurs 2,7–9. However, in vitro experiments argue that Drp1 does not have the dynamic range to complete membrane fission per se 7. In contrast to Drp1, the neuronal-specific classical Dynamin-1 (Dyn1) has been shown to assemble on narrower lipid profiles and facilitates spontaneous membrane fission upon GTP hydrolysis 10,11. Here we discovered that the ubiquitously-expressed classical Dynamin-2 (Dyn2) is a fundamental component of the mitochondrial division machinery. A combination of live-cell and electron microscopy reveals that Dyn2 works in concert with Drp1 to orchestrate sequential constriction events leading up to division. Our work underscores the biophysical limitations of Drp1 and positions Dyn2, which has intrinsic membrane fission properties, at the final step of mitochondrial division.
that further accentuates the nonuniform deposition, resulting in a branch-like dendritic growth and consumption of the electrolyte. [3][4][5][6] As a result, the use of Li metal anode not only leads to poor performance and low Columbic efficiency (CE), but also short circuits and safety hazards since the dendrites may pierce through the separators.Tremendous efforts have been made to realize uniform metallic Li deposition and construct a stable SEI passive layer to solve these problems, such as the use of a gel polymer/solid-state electrolyte, [7][8][9] the addition of additives to the liquid electrolyte [10][11][12] and the construction of artificial SEI layers. [13][14][15] The current density greatly affects the Li plating behavior according to Sand's time model, [16,17] and transforming the traditional planar electrode into a 3D matrix [18][19][20][21] or nanostructuring the current collectors [22][23][24] can partially solve the above problems because a 3D structure decreases the local current density and regulates the electrical field distribution to allow uniform Li deposition. Considering that a Cu foil is the most commonly used anode current collector, much effort has been devoted to modifying the Cu collector to realize the stable use of Li metal. [25][26][27][28] For example, the 3D Cu current collector with submicron skeleton was prepared by Guo and co-workers to improve the electrochemical deposition behavior of Li. [25] Yun Uncontrollable dendrite growth hinders the direct use of a lithium metal anode in batteries, even though it has the highest energy density of all anode materials. Achieving uniform lithium deposition is the key to solving this problem, but it is hard to be realized on a planar electrode surface. In this study, a thin lithiophilic layer consisting of vertically aligned CuO nanosheets directly grown on a planar Cu current collector is prepared by a simple wet chemical reaction. The lithiophilic nature of the CuO nanosheets reduces the polarization of the electrode, ensuring uniform Li nucleation and continuous smooth Li plating, which is difficult to realize on the normally used lithiophobic Cu current collector surface. The integration of the grown CuO arrays and the Cu current collector guarantees good electron transfer, and moreover, the vertically aligned channels between the CuO nanosheets guarantee fast ion diffusion and reduce the local current density. As a result, a high Columbic efficiency of 94% for 180 cycles at a current density of 1 mA cm −2 and a prolonged lifespan of a symmetrical cell (700 h at 0.5 mA cm −2 ) can be easily achieved, showing a simple but effective way to realize Li metal-based anode stabilization.
Tethered interactions between the endoplasmic reticulum (ER) and other membrane-bound organelles allow for efficient transfer of ions and/or macromolecules and provide a platform for organelle fission. Here, we describe an unconventional interface between membraneless ribonucleoprotein granules, such as processing bodies (P-bodies, or PBs) and stress granules, and the ER membrane. We found that PBs are tethered at molecular distances to the ER in human cells in a tunable fashion. ER-PB contact and PB biogenesis were modulated by altering PB composition, ER shape, or ER translational capacity. Furthermore, ER contact sites defined the position where PB and stress granule fission occurs. We thus suggest that the ER plays a fundamental role in regulating the assembly and disassembly of membraneless organelles.
Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.