This study developed a cost-efficient hydration/asymmetric transfer hydrogenation (ATH) process for the one-pot synthesis of valuable chiral alcohols from alkynes. During this process, the initial homogeneous cobaloxime-catalyzed hydration of alkynes was followed by heterogeneous Ru/diamine-catalyzed ATH transformation of the in-situ generated ketones, which provided varieties of chiral alcohols in good yields with up to 99% ee values. The immobilized Ru/diamine catalyst could be recycled at least three times before its deactivation in the sequential reaction system. This work shows a general method for developing one-pot asymmetric sequential catalysis towards sustainable organic synthesis.
The integration of radionuclide iodine molecules in metal−organic frameworks (MOFs) for organic synthesis is attracting considerable research attention due to their specific catalytic performance. However, understanding the comprehensive catalytic behaviors of different types of molecular iodine encapsulated in MOFs for a sequential organic transformation is a great challenge. To address this issue, we have designed two triethylenediamine-functionalized MOFs assembled from 1,3,5-tricarboxyphenyl-2-(triethylenediaminemethyl)benzene-linker and {Cd-(COO) 3 N} or {Cu 4 (u 3 -OH) 2 (COO) 6 N} clusters. Both MOFs show good stability and adsorption of I 2 in the solution and vapor phases. Catalysts obtained after treatment with ethyl acetate present efficient catalytic activity in hydrolysis/alkylation tandem reactions in water. The mechanistic investigations disclose a sequential catalytic process comprising a "hidden" Brønsted acid catalytic hydrolysis of acetals to aldehydes followed by the I 2 -bonding Lewis acid catalytic alkylation of aldehydes to 3,3′-disubstituted 1H-indoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.