The intermittence and fluctuation of renewable energy bring significant uncertainty to the power system, which enormously increases the operational risks of the power system. The development of efficient interval prediction models can provide data support for decision making and help improve the economy and reliability of energy interconnection operation. The performance of Bayesian deep learning models and Bayesian shallow neural networks in short-term interval prediction of photovoltaic power is compared in this study. Specifically, an LSTM Approximate Bayesian Neural Network model (ABNN-I) is built on the basis of the deep learning and Monte Carlo Dropout method. Meanwhile, a Feedforward Bayesian Neural Network (ABNN-II) model is introduced by Feedforward Neural Network and the Markov Chain Monte Carlo method. To better compare and verify the interval prediction capability of the ABNN models, a novel clustering method with three-dimensional features which include the number of peaks and valleys, the average power value, and the non-stationary measurement coefficient is proposed for generating sunny and non-sunny clustering sets, respectively. Results show that the ABNN-I model has an excellent performance in the field of photovoltaic short-term interval forecasting. At a 95% confidence level, the interval coverage from ABNN-I to ABNN-II can be increased by up to 3.1% and the average width of the interval can be reduced by 56%. Therefore, with the help of the high computational capacity of deep learning and the inherent ability to quantify uncertainty of the interval forecast from Bayesian methods, this research provides high-quality interval prediction results for photovoltaic power prediction and solves the problem of difficult modeling for over-fitting that exists in the training process, especially on the non-sunny clustering sets.
The accurate prediction of short-term load is crucial for the grid dispatching department in developing power generation plans, regulating unit output, and minimizing economic losses. However, due to the variability in customers’ electricity consumption behaviour and the randomness of load fluctuations, it is challenging to achieve high prediction accuracy. To address this issue, we propose an ensemble deep learning model that utilizes reduced dimensional clustering and decomposition strategies to mitigate large prediction errors caused by non-linearity and unsteadiness of load sequences. The proposed model consists of three steps: Firstly, the selected load features are dimensionally reduced using singular value decomposition (SVD), and the principal features are used for clustering different loads. Secondly, variable mode decomposition (VMD) is applied to decompose the total load of each class into intrinsic mode functions of different frequencies. Finally, an ensemble deep learning model is developed by combining the strengths of LSTM and CNN-GRU deep learning algorithms to achieve accurate load forecasting. To validate the effectiveness of our proposed model, we employ actual residential electricity load data from a province in northwest China. The results demonstrate that the proposed algorithm performs better than existing methods in terms of predictive accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.