Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic, with increasing deaths worldwide. To date, documentation of the histopathological features in fatal cases of the disease caused by SARS-CoV-2 (COVID-19) has been scarce due to sparse autopsy performance and incomplete organ sampling. We aimed to provide a clinicopathological report of severe COVID-19 cases by documenting histopathological changes and evidence of SARS-CoV-2 tissue tropism. Methods In this case series, patients with a positive antemortem or post-mortem SARS-CoV-2 result were considered eligible for enrolment. Post-mortem examinations were done on 14 people who died with COVID-19 at the King County Medical Examiner's Office (Seattle, WA, USA) and Snohomish County Medical Examiner's Office (Everett, WA, USA) in negative-pressure isolation suites during February and March, 2020. Clinical and laboratory data were reviewed. Tissue examination was done by light microscopy, immunohistochemistry, electron microscopy, and quantitative RT-PCR. Findings The median age of our cohort was 73·5 years (range 42–84; IQR 67·5–77·25). All patients had clinically significant comorbidities, the most common being hypertension, chronic kidney disease, obstructive sleep apnoea, and metabolic disease including diabetes and obesity. The major pulmonary finding was diffuse alveolar damage in the acute or organising phases, with five patients showing focal pulmonary microthrombi. Coronavirus-like particles were detected in the respiratory system, kidney, and gastrointestinal tract. Lymphocytic myocarditis was observed in one patient with viral RNA detected in the tissue. Interpretation The primary pathology observed in our cohort was diffuse alveolar damage, with virus located in the pneumocytes and tracheal epithelium. Microthrombi, where observed, were scarce and endotheliitis was not identified. Although other non-pulmonary organs showed susceptibility to infection, their contribution to the pathogenesis of SARS-CoV-2 infection requires further examination. Funding None.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, ≈ 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean ± SEM τdecay = 85 ± 2 ms); a slowly (mean ± SEM τdecay = 1,162 ± 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, ≈ 10%) of cells, Ito,f was absent and a slowly inactivating (mean ± SEM τdecay = 196 ± 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean ± SEM at +40 mV = 6.8 ± 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean ± SEM at +40 mV = 34.6 ± 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10–50 μM) concentrations of 4-AP and by (≥25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 μM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed.
Abstract-Evidence is emerging that systemic metabolic disturbances contribute to cardiac myocyte dysfunction and clinically apparent heart failure, independent of associated coronary artery disease. To test the hypothesis that perturbation of lipid homeostasis in cardiomyocytes contributes to cardiac dysfunction, we engineered transgenic mice with cardiac-specific overexpression of fatty acid transport protein 1 (FATP1) using the ␣-myosin heavy chain gene promoter. Two independent transgenic lines demonstrate 4-fold increased myocardial free fatty acid (FFA) uptake that is consistent with the known function of FATP1. Increased FFA uptake in this model likely contributes to early cardiomyocyte FFA accumulation (2-fold increased) and subsequent increased cardiac FFA metabolism (2-fold). By 3 months of age, transgenic mice have echocardiographic evidence of impaired left ventricular filling and biatrial enlargement, but preserved systolic function. Doppler tissue imaging and hemodynamic studies confirm that these mice have predominantly diastolic dysfunction. Furthermore, ambulatory ECG monitoring reveals prolonged QT c intervals, reflecting reductions in the densities of repolarizing, voltage-gated K ϩ currents in ventricular myocytes. Our results show that in the absence of systemic metabolic disturbances, such as diabetes or hyperlipidemia, perturbation of cardiomyocyte lipid homeostasis leads to cardiac dysfunction with pathophysiological findings similar to those in diabetic cardiomyopathy. Moreover, the MHC-FATP model supports a role for FATPs in FFA import into the heart in vivo. Key Words: lipids Ⅲ metabolism Ⅲ cardiomyopathy C ardiomyopathy has been observed in a variety of metabolic disorders. In inherited disorders of -oxidation, accumulation of unmetabolized lipid in cardiac myocytes is associated with ventricular systolic dysfunction. 1 In obesity, increased myocardial oxygen consumption and decreased efficiency may contribute to diastolic and systolic dysfunction. 2,3 In diabetes mellitus, heart failure in the absence of valvular or congenital heart disease, alcoholism, hypertension, or significant epicardial coronary atherosclerosis is defined as diabetic cardiomyopathy and accounts for significant morbidity and mortality in people with type 1 and type 2 diabetes. 4 Echocardiographic and hemodynamic studies suggest left ventricular (LV) diastolic impairment represents an early preclinical manifestation of diabetic cardiomyopathy that may progress over an extended period of time to both diastolic and systolic dysfunction. 5,6 In these metabolic disorders, systemic metabolic perturbations lead to myocyte dysfunction and/or loss. Glucotoxicity, 7 ATP depletion, 8 and maladaptive changes in metabolic substrate utilization 9 are mechanisms proposed to contribute to cardiac dysfunction. It has also been hypothesized that mismatch between tissue free fatty acid (FFA) import and utilization leads to lipid accumulation and results in lipotoxicity. In diabetes, this imbalance results from high-serum F...
A novel in vivo experimental strategy, involving cell type-specific expression of a dominant-negative K+ channel pore-forming alpha subunit, was developed and exploited to probe the molecular identity of the cardiac transient outward K+ current (I(to)). A point mutation (W to F) was introduced at position 362 in the pore region of Kv4.2 to produce a nonconducting mutant (Kv4.2W362F) subunit. Coexpression of Kv4.2W362F with Kv4.2 (or Kv4.3) attenuates the wild-type currents, and the effect is subfamily specific; ie, Kv4.2W362F does not affect heterologously expressed Kv1.4 currents. With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, several lines of Kv4.2W362F transgenic mice were generated. Electrophysiological recordings reveal that I(to) is selectively eliminated in ventricular myocytes isolated from transgenic mice expressing Kv4.2W362F, thereby demonstrating directly that the Kv 4 subfamily underlies I(to) in the mammalian heart. Functional knockout of I(to) leads to marked increases in action potential durations in ventricular myocytes and to prolongation of the QT interval in surface ECG recordings. In addition, a novel rapidly activating and inactivating K+ current, which is not detectable in myocytes from nontransgenic littermates, is evident in Kv4.2W362F-expressing ventricular cells. Importantly, these results demonstrate that electrical remodeling occurs in the heart when the expression of endogenous K- channels is altered.
Two kinetically and pharmacologically distinct transient outward K+ currents, referred to as Ito,f and Ito,s, have been distinguished in mouse left ventricular myocytes. Ito,f is present in all left ventricular apex cells and in most left ventricular septum cells, whereas Ito,s is identified exclusively in left ventricular septum cells. Electrophysiological recordings from ventricular myocytes isolated from animals with a targeted deletion of the Kv1.4gene (Kv1.4−/− mice) reveal that Ito,s is undetectable in cells isolated from the left ventricular septum (n= 26). Ito,f density in both apex and septum cells, in contrast, is not affected by deletion of Kv1.4. Neither the 4‐AP‐sensitive, slowly inactivating K+ current, IK,slow, nor the steady‐state non‐inactivating K+ current, ISS, is affected in Kv1.4−/− mouse left ventricular cells. In myocytes isolated from transgenic mice expressing a dominant negative Kv4.2 α subunit, Kv4.2W362F, Ito,f is eliminated in both left ventricular apex and septum cells. In addition, a slowly inactivating transient outward K+ current similar to Ito,s in wild‐type septum cells is evident in myocytes isolated from left ventricular apex of Kv4.2W362F‐expressing transgenics. The density of Ito,s in septum cells, however, is unaffected by Kv4.2W362F expression. Western blots of fractionated mouse ventricular membrane proteins reveal a significant increase in Kv1.4 protein level in Kv4.2W362F‐expressing transgenic mice. The protein levels of other Kv α subunits, Kv1.2 and Kv2.1, in contrast, are not affected by the expression of the Kv4.2W362F transgene. The results presented here demonstrate that the molecular correlates of Ito,f and Ito,s in adult mouse ventricle are distinct. Kv1.4 underlies mouse ventricular septum Ito,s, whereas Kv α subunits of the Kv4 subfamily underlie mouse ventricular apex and septum Ito,f. The appearance of the slow transient outward K+ current in Kv4.2W362F‐expressing left ventricular apex cells with properties indistinguishable from Ito,s in wild‐type cells is accompanied by an increase in Kv1.4 protein expression, suggesting that the upregulation of Kv1.4 underlies the observed electrical remodeling in Kv4.2W362F‐expressing transgenics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.