Keyword queries enjoy widespread usage as they represent an intuitive way of specifying information needs. Recently, answering keyword queries on graph-structured data has emerged as an important research topic. The prevalent approaches build on dedicated indexing techniques as well as search algorithms aiming at finding substructures that connect the data elements matching the keywords. In this paper, we introduce a novel keyword search paradigm for graph-structured data, focusing in particular on the RDF data model. Instead of computing answers directly as in previous approaches, we first compute queries from the keywords, allowing the user to choose the appropriate query, and finally, process the query using the underlying database engine. Thereby, the full range of database optimization techniques can be leveraged for query processing. For the computation of queries, we propose a novel algorithm for the exploration of top-k matching subgraphs. While related techniques search the best answer trees, our algorithm is guaranteed to compute all k subgraphs with lowest costs, including cyclic graphs. By performing exploration only on a summary data structure derived from the data graph, we achieve promising performance improvements compared to other approaches.
Abstract. Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.
Abstract. Linking Open Data (LOD) has become one of the most important community efforts to publish high-quality interconnected semantic data. Such data has been widely used in many applications to provide intelligent services like entity search, personalized recommendation and so on. While DBpedia, one of the LOD core data sources, contains resources described in multilingual versions and semantic data in English is proliferating, there is very few work on publishing Chinese semantic data. In this paper, we present Zhishi.me, the first effort to publish large scale Chinese semantic data and link them together as a Chinese LOD (CLOD). More precisely, we identify important structural features in three largest Chinese encyclopedia sites (i.e., Baidu Baike, Hudong Baike, and Chinese Wikipedia) for extraction and propose several data-level mapping strategies for automatic link discovery. As a result, the CLOD has more than 5 million distinct entities and we simply link CLOD with the existing LOD based on the multilingual characteristic of Wikipedia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.