Computed tomography (CT) is an imaging modality widely used for medical diagnosis and treatment. CT images are often corrupted by undesirable artifacts when metallic implants are carried by patients, which creates the problem of metal artifact reduction (MAR). Existing methods for reducing the artifacts due to metallic implants are inadequate for two main reasons. First, metal artifacts are structured and non-local so that simple image domain enhancement approaches would not suffice. Second, the MAR approaches which attempt to reduce metal artifacts in the X-ray projection (sinogram) domain inevitably lead to severe secondary artifact due to sinogram inconsistency. To overcome these difficulties, we propose an end-to-end trainable Dual Domain Network (DuDoNet) to simultaneously restore sinogram consistency and enhance CT images. The linkage between the sinogram and image domains is a novel Radon inversion layer that allows the gradients to back-propagate from the image domain to the sinogram domain during training. Extensive experiments show that our method achieves significant improvements over other single domain MAR approaches. To the best of our knowledge, it is the first end-to-end dual-domain network for MAR.
Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that disentangles the metal artifacts from CT images in the latent space. It supports different forms of generations (artifact reduction, artifact transfer, and self-reconstruction, etc.) with specialized loss functions to obviate the need for supervision with synthesized data. Extensive experiments show that when applied to a synthesized dataset, our method addresses metal artifacts significantly better than the existing unsupervised models designed for natural image-to-image translation problems, and achieves comparable performance to existing supervised models for MAR. When applied to clinical datasets, our method demonstrates better generalization ability over the supervised models. The source code of this paper is publicly available at https://github.com/liaohaofu/adn. Index Terms-Image enhancement/restoration (noise and artifact reduction), neural network, X-ray imaging and computed tomography.
Generating radiology reports is time-consuming and requires extensive expertise in practice. Therefore, reliable automatic radiology report generation is highly desired to alleviate the workload. Although deep learning techniques have been successfully applied to image classification and image captioning tasks, radiology report generation remains challenging in regards to understanding and linking complicated medical visual contents with accurate natural language descriptions. In addition, the data scales of open-access datasets that contain paired medical images and reports remain very limited. To cope with these practical challenges, we propose a generative encoder-decoder model and focus on chest x-ray images and reports with the following improvements. First, we pretrain the encoder with a large number of chest x-ray images to accurately recognize 14 common radiographic observations, while taking advantage of the multi-view images by enforcing the cross-view consistency. Second, we synthesize multi-view visual features based on a sentence-level attention mechanism in a late fusion fashion. In addition, in order to enrich the decoder with descriptive semantics and enforce the correctness of the deterministic medical-related contents such as mentions of organs or diagnoses, we extract medical concepts based on the radiology reports in the training data and fine-tune the encoder to extract the most frequent medical concepts from the x-ray images. Such concepts are fused with each decoding step by a word-level attention model. The experimental results conducted on the Indiana University Chest X-Ray dataset demonstrate that the proposed model achieves the state-of-the-art performance compared with other baseline approaches.
Automatic vertebrae identification and localization from arbitrary computed tomography (CT) images is challenging. Vertebrae usually share similar morphological appearance. Because of pathology and the arbitrary field-of-view of CT scans, one can hardly rely on the existence of some anchor vertebrae or parametric methods to model the appearance and shape. To solve the problem, we argue that: 1) one should make use of the short-range contextual information, such as the presence of some nearby organs (if any), to roughly estimate the target vertebrae; and 2) due to the unique anatomic structure of the spine column, vertebrae have fixed sequential order, which provides the important long-range contextual information to further calibrate the results. We propose a robust and efficient vertebrae identification and localization system that can inherently learn to incorporate both the short- and long-range contextual information in a supervised manner. To this end, we develop a multi-task 3-D fully convolutional neural network to effectively extract the short-range contextual information around the target vertebrae. For the long-range contextual information, we propose a multi-task bidirectional recurrent neural network to encode the spatial and contextual information among the vertebrae of the visible spine column. We demonstrate the effectiveness of the proposed approach on a challenging data set, and the experimental results show that our approach outperforms the state-of-the-art methods by a significant margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.