Early diagnosis of skin cancer from dermoscopy images significantly reduces the mortality due to this cancer. However, several reasons impact the system diagnosis precision. One of the important problems in this process happens during image acquisition. Often, in medical photography, there are some uncertainties like noises and brightness variations, initial digitalization and sampling which affect the image quality. This study presents a new approach for border detection of the cancer area by considering the uncertainties. Interval analysis is utilized to extend the proposed edge detection method and the Hukuhara method is utilized for developing the differentiation formula for edge detection in the interval space. Simulation results are applied to two different skin cancer atlas and the results are compared with three popular methods by considering two types of noises including Gaussian noise and salt-and-pepper noise. The results showed that the introduced method gives better results than the compared methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.