The performance of Cd, Ni, and Cu release from river sediment at different pH was investigated by a leaching test using deionised water and river water as leachants. Visual MINTEQ geochemical software was used to model the experimental results to predict heavy metal release from sediments. The distribution and speciation of heavy metals in the sediments after leaching test were analyzed by Tessier sequential extraction. Leaching test results showed that the release amounts of Cd, Ni, and Cu are in the range of 10.2–27.3 mg·kg−1, 80.5–140.1 mg·kg−1, and 6.1–30.8 mg·kg−1, respectively, with deionised water as leachant at different pH. As far as the river water was used as the leaching solution in the test, the results show similar metal leaching contents and tendencies to that of the deionised water as leaching solution. The results of Tessier sequential extraction indicate that Cd of residual fraction easily forms obvious precipitate under the acidic condition, especially in the range of pH 0–4 with the residual of Cd over 50% of the total Cd in the sediment. The exchangeable content of Ni decreases with the increase of pH under the range of 0–5. The Fe-Mn oxide fraction of Cu in the sediments changes significantly from pH 0 to pH 9. Based on the effect of pH on the leaching of Cd, Ni, and Cu from the polluted sediment in the tests, more accurate information could be obtained to assess the risk related to metal release from sediments once it is exposed to the changed acid/alkali water conditions.
Immunotherapy has moved to the forefront of modern oncologic treatment in the past few decades. Various forms of immunotherapy currently are emerging, including oncolytic viruses. In this therapy, viruses are engineered to selectively propagate in tumor cells and reduce toxicity for non-neoplastic tissues. Adenovirus is one of the most frequently employed oncolytic viruses because of its capacity in tumor cell lysis and immune response stimulation. Upregulation of immunostimulatory signals induced by oncolytic adenoviruses (OAds) might significantly remove local immune suppression and amplify antitumor immune responses. Existing genetic engineering technology allows us to design OAds with increasingly better tumor tropism, selectivity, and antitumor efficacy. Several promising strategies to modify the genome of OAds have been applied: capsid modifications, small deletions in the pivotal viral genes, insertion of tumor-specific promoters, and addition of immunostimulatory transgenes. OAds armed with tumor-associated antigen (TAA) transgenes as cancer vaccines provide additional therapeutic strategies to trigger tumor-specific immunity. Furthermore, the combination of OAds and immune checkpoint inhibitors (ICIs) increases clinical benefit as evidence shown in completed and ongoing clinical trials, especially in the combination of OAds with antiprogrammed death 1/programed death ligand 1 (PD-1/PD-L1) therapy. Despite remarkable antitumor potency, oncolytic adenovirus immunotherapy is confronted with tough challenges such as antiviral immune response and obstruction of tumor microenvironment (TME). In this review, we focus on genomic modification strategies of oncolytic adenoviruses and applications of OAds in cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.