Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality. However, the use of a single gene to impact several metabolic pathways is difficult. Here, we show that overexpression of the single gene SlMYB75 (SlMYB75-OE) is effective at improving multiple fruit quality traits. In these engineered fruits, the anthocyanin content reached 1.86 mg g−1 fresh weight at the red-ripe stage, and these SlMYB75-OE tomatoes displayed a series of physiological changes, including delayed ripening and increased ethylene production. In addition to anthocyanin, the total contents of phenolics, flavonoids and soluble solids in SlMYB75-OE fruits were enhanced by 2.6, 4, and 1.2 times, respectively, compared to those of wild-type (WT) fruits. Interestingly, a number of aroma volatiles, such as aldehyde, phenylpropanoid-derived and terpene volatiles, were significantly increased in SlMYB75-OE fruits, with some terpene volatiles showing more than 10 times higher levels than those in WT fruits. Consistent with the metabolic assessment, transcriptomic profiling indicated that the genes involved in the ethylene signaling, phenylpropanoid and isoprenoid pathways were greatly upregulated in SlMYB75-OE fruits. Yeast one-hybrid and transactivation assays revealed that SlMYB75 is able to directly bind to the MYBPLANT and MYBPZM cis-regulatory elements and to activate the promoters of the LOXC, AADC2 and TPS genes. The identification of SlMYB75 as a key regulator of fruit quality attributes through the transcriptional regulation of downstream genes involved in several metabolic pathways opens new avenues towards engineering fruits with a higher sensory and nutritional quality.
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant–pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit–pathogen interactions remaining relatively unexplored compared with well-studied leaf–pathogen interactions, progress has occurred in the citrus fruit–Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.