High-pressure deep shale gas reservoirs are usually highly stress-sensitive. When the reasonable production mode of shale gas well is built, the impact of strong stress sensitivity should be fully considered. First, this study calculated the relationship between permeability and formation pressure under different elastic modulus based on the shale lithology of Long Ma Xi formation in Sichuan Basin by testing and analysing the mechanical parameters of the rock. According to numerical simulation result, when the elastic modulus exceeds 14.0 GPa, the stress sensitivity of the matrix will slight affect the cumulative gas production of shale gas. Second, the changing relation between fracture conductivity and permeability with fracture pressure and the time of pressure acts were experimentally studied. The numerical simulation result suggested that the 30-year cumulative gas production considering the stress sensitivity was reduced by 13.5% compared with the 30-year cumulative gas production without considering the stress sensitivity. Finally, the production of different production modes under different stress sensitive characteristics was predicted using numerical simulation method. When the matrix and fractures are fixed with a same stress-sensitive curve, the initial production allocation will not significantly impact the cumulative gas production. When the fractured fractures are subjected to a varying stress sensitive curve, the lower production allocation will result in higher post-production and cumulative gas production.
In order to explore the feasibility of the Computational Fluid Dynamics (CFD) method for plunger gas lift and the flow pattern in a long wellbore, a lab simulation test was conducted to verify the reliability of the CFD simulation results. Verification data were provided for CFD simulation through carrying out a plunger gas lift lab test for vertical wells, identifying the plunger movement patterns and delivery rates under different flow pressures, and determining the minimum plunger startup pressure or differential pressure and leakage, and an identical CFD physical model was created on the basis of the lab test model, CFD dynamic grid programming and CFD simulation were conducted under test conditions, and a comparison of the simulation and test results was made to identify the calculation accuracy and the rationality of the CFD model and method; finally, boundary conditions such as temperature and pressure were set according to the actual long wellbore (200 m) conditions, the CFD simulation was performed, and the impacts of the downhole conditions on the gas lift performance were analyzed, so as to develop CFD calculation methods to predict the bottom-hole flow pressure, plunger speed, and delivery rate. The results show: the average plunger speed range is 7.74–22.5 m/s when the flow pressure varies from 199.77 to 632.93 kPa, and the leakage rate increases in a nearly linear way with the speed; compared with the lab test results, the simulation results from the created dynamic grid model and multi-phase turbulent flow model have the leakage error of 7.2% and the plunger speed average error is smaller than 11.1%; under long-wellbore conditions, the plunger lift speed shows the change pattern of increasing and then decreasing, the wellbore pressure has a wave-like drop, and in addition to this pressure drop characteristic, the fact that the plunger startup pressure differential increases with the wellhead pressure should be considered (when the bottom-hole pressure is 15 MPa, the wellhead pressure must not exceed 10 MPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.