Low cost and highly efficient bifuctional catalysts for overall water electrolysis have drawn considerable interests over the past several decades. Here, rationally synthesized mesoporous nanorods of nickel–cobalt–iron–sulfur–phosphorus composites are tightly self‐supported on Ni foam as a high‐performance, low cost, and stable bifunctional electrocatalyst for water electrolysis. The targeted designing and rational fabrication give rise to the nanorod‐like morphology with large surface area and excellent conductivity. The NiCoFe‐PS nanorod/NF can reach 10 mA cm−2 at a small overpotential of 195 mV with a Tafel slope of 40.3 mV dec−1 for the oxygen evolution reaction and 97.8 mV with 51.8 mV dec−1 for the hydrogen evolution reaction. Thus, this bifunctional catalyst shows low potentials of 1.52 and 1.76 V at 10 and 50 mA cm−2 toward overall water splitting with excellent stability for over 200 h, which are superior to most non‐noble metal‐based bifunctional electrocatalysts recently. This work provides a new strategy to fabricate multiple metal‐P/S composites with the mesoporous nanorod‐like structure as bifunctional catalysts for overall water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.