No abstract
Diagnosing problems in networks is a time-consuming and error-prone process. Existing tools to assist operators primarily focus on analyzing control plane configuration. Configuration analysis is limited in that it cannot find bugs in router software, and is harder to generalize across protocols since it must model complex configuration languages and dynamic protocol behavior. This paper studies an alternate approach: diagnosing problems through static analysis of the data plane. This approach can catch bugs that are invisible at the level of configuration files, and simplifies unified analysis of a network across many protocols and implementations. We present Anteater, a tool for checking invariants in the data plane. Anteater translates high-level network invariants into boolean satisfiability problems (SAT), checks them against network state using a SAT solver, and reports counterexamples if violations have been found. Applied to a large university network, Anteater revealed 23 bugs, including forwarding loops and stale ACL rules, with only five false positives. Nine of these faults are being fixed by campus network operators.
Security for applications running on mobile devices is important. In this paper we present ExpressOS, a new OS for enabling highassurance applications to run on commodity mobile devices securely. Our main contributions are a new OS architecture and our use of formal methods for proving key security invariants about our implementation. In our use of formal methods, we focus solely on proving that our OS implements our security invariants correctly, rather than striving for full functional correctness, requiring significantly less verification effort while still proving the security relevant aspects of our system.We built ExpressOS, analyzed its security, and tested its performance. Our evaluation shows that the performance of ExpressOS is comparable to an Android-based system. In one test, we ran the same web browser on ExpressOS and on an Android-based system, and found that ExpressOS adds 16% overhead on average to the page load latency time for nine popular web sites.
AimsHis-Purkinje system pacing has recently emerged as an alternative to biventricular pacing (BIVP) in cardiac resynchronization therapy (CRT). The aim of this study was to conduct a meta-analysis comparing the clinical outcomes associated with His-Purkinje system pacing (HPSP) vs. BIVP in patients with heart failure. There is also a comparison of clinical outcomes of His-bundle pacing (HBP) and left bundle branch pacing (LBBP) in the His-Purkinje system.MethodsWe searched the Cochrane Library, Embase, and PubMed, for studies published between January 2010 and October 2021 that compared the clinical outcomes associated with HPSP vs. BIVP and HBP vs. LBBP in HPSP in patients who underwent CRT. The pacing threshold, R-wave amplitudes, QRS duration, New York Heart Association functional (NYHA), left ventricular ejection fraction (LVEF), and LV end-diastolic diameter (LVEDD) of heart failure, at follow-up, were extracted and summarized for meta-analysis.ResultsA total of 18 studies and 1517 patients were included in our analysis. After a follow-up period of 9.3 ± 5.4 months, the HPSP was found to be associated with shorter QRS duration in the CRT population compared to that in the BIVP (SMD, −1.17; 95% CI, −1.56 to −0.78; P < 0.00001; I2 = 74%). No statistical difference was verified between HBP and LBBP on QRS duration (SMD, 0.04; 95% CI, −0.32 to 0.40; P = 0.82; I2 = 84%). In the comparison of HPSP and BIVP, the LBBP subgroup showed improved LVEF (SMD, 0.67; 95% CI, 0.42–0.91; P < 0.00001; I2 = 0%), shorter LVEDD (SMD, 0.59; 95% CI, 0.93–0.26; P = 0.0005; I2 = 0%), and higher New York Heart Association functional class (SMD, −0.65; 95% CI, −0.86 to −0.43; P < 0.00001; I2 = 45%). In terms of pacing threshold and R-wave amplitude clinical outcomes, LBBP has a lower pacing threshold (SMD, 1.25; 95% CI, 1.12–1.39; P < 0.00001; I2 = 47%) and higher R-wave amplitude (MD, −7.88; 95% CI, −8.46 to −7.31; P < 0.00001; I2 = 8%) performance compared to HBP.ConclusionOur meta-analysis showed that the HPSP produced higher LVEF, shorter QRS duration, and higher NYHA functional class in the CRT population than the BIVP as observed on follow-up. LBBP has a lower pacing threshold and higher R-wave amplitude. HPSP may be a new and promising alternative to BIVP in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.