Despite the progress in chronic wound treatment, antibacterial cutaneous scaffold with high efficiency in wound healing is still the hot spot in the field. In present study, a functionalized silk fibroin (SF) cutaneous scaffold incorporated with natural medicine usnic acid (UA) is investigated, in which UA is used as an antibacterial and wound‐healing reagent. Via electrospinning, UA–SF mixture is fabricated into UA–SF composite scaffold (USCS), which is composed of uniform nanofibers with average diameters of around 360 ± 10 nm. The interwoven nanofibers form mesh structure providing sufficient moisture permeability for scaffold. With methanol treatment, USCS presents improved mechanical properties and stability to protease XIV. In the presence of USCS, the growth rate of both Gram‐positive and Gram‐negative bacteria, including Staphylococcus aureus, Streptococci pyogenes, Escherichia coli, and Pseudomonas aeruginosa, is significantly inhibited in plate culture and suspension assays. In a cutaneous excisional mouse wound model, USCS presents a significant increase of wound closure rate, compared with pure SF scaffold and commercial dressing, Tegaderm Hydrocolloid 3M. The histological assessments further prove that USCS can enhance re‐epithelialization, vascularization, and collagen deposition in wound site to promote the wound‐healing process, which indicates the potential application of USCS in chronic wound treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.