Gesture recognition is one of the important ways of human-computer interaction, which is mainly detected by visual technology. The temporal and spatial features are extracted by convolution of the video containing gesture. However, compared with the convolution calculation of a single image, multiframe image of dynamic gestures has more computation, more complex feature extraction, and more network parameters, which affects the recognition efficiency and real-time performance of the model. To solve above problems, a dynamic gesture recognition model based on CBAM-C3D is proposed. Key frame extraction technology, multimodal joint training, and network optimization with BN layer are used for making the network performance better. The experiments show that the recognition accuracy of the proposed 3D convolutional neural network combined with attention mechanism reaches 72.4% on EgoGesture dataset, which is improved greatly compared with the current main dynamic gesture recognition methods, and the effectiveness of the proposed algorithm is verified.
Summary With the continuous development of sensor technology, the acquisition cost of RGB‐D images is getting lower and lower, and gesture recognition based on depth images and Red‐Green‐Blue (RGB) images has gradually become a research direction in the field of pattern recognition. However, most of the current processing methods for RGB‐D gesture images are relatively simple, ignoring the relationship and influence between its two modes, and unable to make full use of the correlation factors between different modes. In view of the above problems, this paper optimizes the effect of RGB‐D information processing by considering the independent features and related features of multi‐modal data to construct a weight adaptive algorithm to fuse different features. Simulation experiments show that the method proposed in this paper is better than the traditional RGB‐D gesture image processing method and the gesture recognition rate is higher. Comparing the current more advanced gesture recognition methods, the method proposed in this paper also achieves higher recognition accuracy, which verifies the feasibility and robustness of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.