Stepless capacity regulation through delayed closure of suction valves plays an important role in energy conservation for reciprocating compressors. Serious gas pulsation usually occurs with a suction valve unloader, and its analysis and suppression is a challenge owing to the varied components of the pulsation excitation under different conditions. In this study, a fast algorithm was proposed to calculate the gas pulsation of a compressor system with stepless capacity regulation and was further incorporated into the frequency-domain modeling of the gas pulsation. A test rig was constructed, and the model was experimentally verified. The dynamic pressure at positions in the suction and discharge valve chambers was measured, as the compressor capacity was varied by changing the closing time of the suction valves. The experimental data were compared with the simulated results and indicated a good agreement. The results showed that the suction valve unloader had a negative impact on the gas pulsation in the suction pipeline system. The pressure pulsation of the main excitation frequency increased in the suction pipeline system and decreased in the discharge pipeline, as the opening time of the suction valve increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.