We determined the role of Phospholipase Da1 (PLDa1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The plda1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in plda1 cells, whereas PA stimulated NADPH oxidase activity in both genotypes. PA bound to recombinant Arabidopsis NADPH oxidase RbohD (respiratory burst oxidase homolog D) and RbohF. The PA binding motifs were identified, and mutation of the Arg residues 149, 150, 156, and 157 in RbohD resulted in the loss of PA binding and the loss of PA activation of RbohD. The rbohD mutant expressing non-PA-binding RbohD was compromised in ABA-mediated ROS production and stomatal closure. Furthermore, ABA-induced production of nitric oxide (NO) was impaired in plda1 guard cells. Disruption of PA binding to ABI1 protein phosphatase 2C did not affect ABA-induced production of ROS or NO, but the PA-ABI1 interaction was required for stomatal closure induced by ABA, H 2 O 2 , or NO. Thus, PA is as a central lipid signaling molecule that links different components in the ABA signaling network in guard cells.
Abstract-Searching for a vacant parking space in a congested area or a large parking lot and preventing auto theft are major concerns to our daily lives. In this paper, we propose a new smart parking scheme for large parking lots through vehicular communication. The proposed scheme can provide the drivers with real-time parking navigation service, intelligent antitheft protection, and friendly parking information dissemination. Performance analysis via extensive simulations demonstrates its efficiency and practicality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.