Abstract. The number of electric vehicles (EVs) has been rapidly increasing over the last decade, motivated by the effort to decrease greenhouse gas emissions and the fast development of battery technology. This trend challenges distribution grids since EVs will bring significant stress if the charging of many EVs is not coordinated. Among the many strategies to cope with this challenge, next-day EV energy demand forecasting plays a key role. Existing studies have focused on predicting the next-day energy demand of EVs on the aggregated and individual levels. However, these studies have not yet extensively considered individual user mobility behaviors, which exhibit a high level of predictability. In this study, we consider several mobility features of individual users when forecasting the next-day energy demand of individual EVs. Three types of quantile regression models are used to generate probabilistic forecasts of energy demand, particularly the next-day energy consumption and parking duration. Based on the prediction results, two time-shifting smart charging strategies are designed: unidirectional and bidirectional smart charging. These two strategies are compared with an uncontrolled charging baseline to evaluate their financial benefits and peak-shaving effects. Our results show that human mobility features can partially improve the prediction of next-day individual EV energy demand. Additionally, users and distribution grids can benefit from smart charging strategies both financially and technically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.