Efficient non-precious metal catalysts are crucial for hydrogen production from borohydride compounds in aqueous media via hydrogen atoms in water. A method for preparing magnetic polymer nanoparticles is developed in this study based on the chemical deposition of nickel onto hydrophilic polymer nanogels. High-resolution transmission electron microscopic and XPS analyses show that Ni exists mainly in the form of NiO in nanogels. Excellent catalytic activities of the nanoparticles are demonstrated for hydrogen generation from the hydrolysis of dimethylamine-borane and sodium borohydride in which the initial turnover frequencies (TOF) are 376 and 1919 h-1 , respectively. Kinetic studies also reveal an Arrhenius activation energy of 50.96 kJ/mol for the hydrolysis of dimethylamine-borane and 47.82 kJ/mol for the hydrolysis of sodium borohydride, which are lower than those catalyzed by Ru metal. Excellent reusability and the use of water for hydrogen production from dimethylamine-borane provide the additional benefit of using a hybrid catalyst. The principle illustrated in the present study offers a new strategy to explore polymer-transition metal hybrid particles for hydrogen energy technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.