In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < −10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17
λ0 (
λ0is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.
A novel singly differentially‐fed microstrip patch antenna (DFMA) is proposed, which is composed of a radiating patch, a differentially‐fed network with a twin antisymmetric miniaturized baluns and a ground plane for unidirectional radiation. In the differentially‐fed network, the signal is coupled to the two feedlines on both sides by the two miniaturized baluns. The radiating patch is excited by the coupling feed sheet located below the radiating patch, and the coupling feed sheet is connected to the upper end of the feedline. The lower end of the feedlines is connected to the ground plane, and there is a slot on the ground of the feeding network. Due to the existence of coupling feed sheet and slot, a second nonradiating resonant is achieved, and a wideband property is obtained. Finally, the prototype of the antenna is fabricated and studied experimentally. Simulated and measured results show that the impedance bandwidth of the antenna is 30.3% (1.71‐2.32 GHz) for S11 < −10 dB. Besides, a stable symmetric radiation pattern is obtained with gain around 9.6 dB and cross‐polarization less than −21 dB, which demonstrates the designed antenna has the property of wideband, high gain and low cross polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.