The theoretical prediction of the catalytic activity is very beneficial for the design of highly efficient catalysts. At present, most theoretical descriptors focus on estimating the catalytic activity and understanding the enhancement mechanism of catalysts, while it is also quite important to find a factor to correlate the descriptors with preparation methods. In this work, a correlation factor, the d electron density of transition metal ions, was developed to correlate the d band center values of transition metal ions with the preparation methods of amorphization and Al introduction. According to the results of theoretical simulations, the correlation factor not only exhibited favorable linear relationships with the theoretical overpotentials of (CoFeAl x ) 3 O 4 and (CoFeAl x ) 3 O 4 + (CoFeAl x )OOH systems but also correlated with two preparation methods by altering the volume of systems. Based on theoretical guidance, the electrocatalytic activities of the prepared (CoFeAl x ) 3 O 4 specimens were gradually improved by the preparation methods of amorphization and Al introduction, and the Am-CoFeAl-2-10h specimen exhibited a low kinetic barrier of 268 mV, fast charge transfer rate, and stable electrocatalytic activity. This strategy could be applied to design highly efficient catalysts by adjusting the correlation factor of the active site with suitable preparation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.