As the sources of information that we consume everyday rapidly diversify, it is becoming increasingly important to develop NLP tools that help to evaluate the credibility of the information we receive. A critical step towards this goal is to determine the factuality of events in text. In this paper, we frame factuality assessment as a modal dependency parsing task that identifies the events and their sources, formally known as conceivers, and then determine the level of certainty that the sources are asserting with respect to the events. We crowdsource the first large-scale data set annotated with modal dependency structures that consists of 353 Covid-19 related news articles, 24,016 events, and 2,938 conceivers. 1 We also develop the first modal dependency parser that jointly extracts events, conceivers and constructs the modal dependency structure of a text. We evaluate the joint model against a pipeline model and demonstrate the advantage of the joint model in conceiver extraction and modal dependency structure construction when events and conceivers are automatically extracted. We believe the dataset and the models will be a valuable resource for a whole host of NLP applications such as fact checking and rumor detection.
We present the construction of a corpus of 500 Wikinews articles annotated with temporal dependency graphs (TDGs) that can be used to train systems to understand temporal relations in text. We argue that temporal dependency graphs, built on previous research on narrative times and temporal anaphora, provide a representation scheme that achieves a good balance between completeness and practicality in temporal annotation. We also provide a crowdsourcing strategy to annotate TDGs, and demonstrate the feasibility of this approach with an evaluation of the quality of the annotation, and the utility of the resulting data set by training a machine learning model on this data set. This data set is publicly available 1 .
Understanding scientific articles related to COVID-19 requires broad knowledge about concepts such as symptoms, diseases and medicine. Given the very large and evergrowing scientific articles related to COVID-19, it is a daunting task even for experts to recognize the large set of concepts mentioned in these articles. In this paper, we address the problem of concept wikification for COVID-19, which is to automatically recognize mentions of concepts related to COVID-19 in text and resolve them into Wikipedia titles. We develop an approach to curate a COVID-19 concept wikification dataset by mining Wikipedia text and the associated intra-Wikipedia links. We also develop an end-to-end system for concept wikification for COVID-19. Preliminary experiments show very encouraging results. Our dataset, code and pre-trained model are available at github.com/panlybero/ Covid19_wikification.
We present a system for rapidly customizing event extraction capability to find new event types and their arguments. The system allows a user to find, expand and filter event triggers for a new event type by exploring an unannotated corpus. The system will then automatically generate mention-level event annotation automatically, and train a Neural Network model for finding the corresponding event. Additionally, the system uses the ACE corpus to train an argument model for extracting Actor, Place, and Time arguments for any event types, including ones not seen in its training data. Experiments show that with less than 10 minutes of human effort per event type, the system achieves good performance for 67 novel event types. The code, documentation, and a demonstration video will be released as open source on github.com.
Timely responses from policy makers to mitigate the impact of the COVID-19 pandemic rely on a comprehensive grasp of events, their causes, and their impacts. These events are reported at such a speed and scale as to be overwhelming. In this paper, we present Excava-torCovid, a machine reading system that ingests open-source text documents (e.g., news and scientific publications), extracts COVID-19 related events and relations between them, and builds a Temporal and Causal Analysis Graph (TCAG). Excavator will help government agencies alleviate the information overload, understand likely downstream effects of political and economic decisions and events related to the pandemic, and respond in a timely manner to mitigate the impact of COVID-19. We expect the utility of Excavator to outlive the COVID-19 pandemic: analysts and decision makers will be empowered by Excavator to better understand and solve complex problems in the future. An interactive TCAG visualization is available at http://afrl402. bbn.com:5050/index.html. We also released a demonstration video at https:// vimeo.com/528619007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.