We analyze the secrecy outage performance of a mixed radio frequency-free space optical (RF-FSO) transmission system with imperfect channel state information (CSI). We deal with a single-input multiple-output wiretap model, where a base station (works as the relay) forwards the signal transmitted from a user (source) to a data center (works as the destination), while an eavesdropper wiretaps the confidential information by decoding the received signal. Both the relay and the eavesdropper are armed with multiple antennas, and maximal ratio combining scheme is utilized to improve the received signal-to-noise ratio (SNR). The effects of imperfect CSI of the RF link and the FSO link, misalignment, detection schemes, and relaying schemes on the secrecy outage performance of mixed RF-FSO systems are studied. First, the cumulative distribution function and probability density function of FSO links with pointing error and two different detection technologies are derived. Then, we derive the closed-form expressions for the lower bound of the secrecy outage probability (SOP) with fixed-gain relaying and variable-gain relaying schemes. Furthermore, asymptotic results for the SOP are investigated by exploiting the unfolding of Meijer's G -function when the electrical SNR of FSO link approaches infinity. Finally, Monte Carlo simulation results are presented to corroborate the correctness of the analysis.
In this work, we analyze the secrecy outage performance of a dual-hop relay system composed of multiple-input-multiple-output radio-frequency (RF) links and a free-space optical (FSO) link while a multiple-antenna eavesdropper wiretaps the confidential information by decoding the received signals from the resource node. The channel state information (CSI) of the RF and FSO links is considered to be outdated. We propose three transmit antenna selection (TAS) schemes to enhance the secrecy performance of the considered systems. The secrecy outage performance with different TAS schemes is analyzed and the effects of misalignment and detection technology on the secrecy outage performance of mixed systems are studied. We derive the closed-form expressions for probability density function (PDF) and cumulative distribution function (CDF) over Málaga channel with imperfect CSI. Then the closed-form expressions for the CDF and PDF of the equivalent signal-to-noise ratio (SNR) at the legitimate receiver over Nakagami-m and Málaga channels are derived. Furthermore, the lower bound of the secrecy outage probability (SOP) with different TAS schemes are derived. Besides, the asymptotic results for SOP are investigated by exploiting the unfolding of Meijer's G-function when the electrical SNR of FSO link approaches infinity. Finally, Monte-Carlo simulation results are presented to testify the correctness of the proposed analysis. The results illustrate that the outdated CSI shows a strong effect on the secrecy outage performance. In addition, increasing the number of antennas at the source cannot significantly enhance the secrecy performance of the considered systems.Manuscript received.Mixed RF-FSO systems, outdated channel state information, physical layer security, secrecy outage probability, transmit antenna selection.
Three species of rice migratory pests (Cnaphalocrocis medinalis, Sogatella furcifera, and Nilaparvata lugens) cause severe yield and economic losses to rice food every year. It is important that these pests are timely and accurately monitored for controlling them and ensuring food security. Insect radar is effective monitoring equipment for migratory pests flying at high altitude. But insect radar is costly and has not been widely used in fields. Searchlight trap is an economical device, which uses light to trap migratory pests at high altitude. But the trapped pests need to be manually identified and counted from a large number of non-target insects, which is inefficient and labor-intensive. In order to replace manual identification of migratory pests, we develop an intelligent monitoring system of migratory pests based on searchlight trap and machine vision. This system includes a searchlight trap based on machine vision, an automatic identification model of migratory pests, a Web client, and a cloud server. The searchlight trap attracts the high-altitude migratory insects through lights at night and kills them with the infrared heater. All trapped insects are dispersed through a multiple layers of insect conveyor belts and a revolving brush. The machine vision module collects the dispersed insect images and sends them to the cloud server through 4G network. The improved model YOLO-MPNet based on YOLOv4 and SENet channel attention mechanism is proposed to detect three species of migratory pests in the images. The results show that the model effectively improves the detection effect of three migratory pests. The precision is 94.14% for C. medinalis, 85.82% for S. furcifera, and 88.79% for N. lugens. The recall is 91.99% for C. medinalis, 82.47% for S. furcifera, and 85.00% for N. lugens. Compared with some state-of-the-art models (Faster R-CNN, YOLOv3, and YOLOv5), our model shows a low false detection and missing detection rates. The intelligent monitoring system can real-timely and automatically monitor three migratory pests instead of manually pest identification and count, which can reduce the technician workload. The trapped pest images and historical data can be visualized and traced, which provides reliable evidence for forecasting and controlling migratory pests.
Theoretical researchers of manager psychology have excellent potential to extend its research framework to more enterprise application areas, such as innovation, performance, and safety in production. Research in these areas has also been increasing in the past 10 years. Psychological capital is composed of four aspects: self-efficacy, hope, optimism, and tenacity. It plays an essential role in stimulating organizational growth and improving organizational performance. In safety management work, managers, as the core members of the organization, have a relationship between their psychological capital and employees’ safety performance. Nevertheless, the closeness of the relationship between psychological capital and employee safety performance has not been fully demonstrated by academic circles. Based on positive psychology theory, this paper conducts a questionnaire survey of 157 managers and 314 employees related to safety work in manufacturing enterprises. From the new perspective of organizational emotional capability, this paper investigates the complex and extensive social-psychological role in organizations and combs, analyzes, and integrates relevant psychological research to construct the influence mechanism of managers’ psychological capital and employee safety performance. Finally, the three important issues found based on data analysis were: (1) Managers’ psychological capital has a significant positive impact both on employee safety performance and organizational emotional capability; (2) Organizational emotional capability has a significant positive impact on employee safety performance; (3) organizational emotional capability plays a partial mediating role in the relationship between managers’ psychological capital and employee safety performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.