Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, lattice OR reactions are often accompanied with irreversible oxygen oxidation, leading to local structural transformations and voltage/capacity fading. Herein, it is proposed that the reversibility of lattice OR can be remarkably improved through modulating transition metal–oxygen covalency for layered electrode of Na‐ion batteries. By developing a novel layered P2‐Na0.6Mg0.15Mn0.7Cu0.15O2 electrode, it is demonstrated that the highly electronegative Cu dopants can improve the lattice OR reversibility to 95% compared to 73% for Cu‐free counterpart, as directly quantified through high‐efficiency mapping of resonant inelastic X‐ray scattering. Crucially, the large energetic overlap between Cu 3d and O 2p states dictates the rigidity of oxygen framework, which effectively mitigates the structural distortion of local oxygen environment upon (de)sodiation and leads to the enhanced lattice OR reversibility. The electrode also exhibits a completely solid‐solution reaction with an ultralow volume change of only 0.45% and a reversible metal migration upon cycling, which together ensure the improved electrochemical performance. These results emphasize the critical role of transition metal–oxygen covalency for enhancing the reversibility of lattice OR toward high‐capacity electrodes employing OR chemistry.
Utilizing anionic redox activity within layered oxide cathode materials represents a transformational avenue for enabling high‐energy‐density rechargeable batteries. However, the anionic oxygen redox reaction is often accompanied with irreversible dynamic oxygen evolution, leading to unfavorable structural distortion and thus severe voltage decay and rapid capacity fading. Herein, it is proposed and validated that the dynamic oxygen evolution can be effectively suppressed through the synergistic surface CaTiO3 dielectric coating and bulk site‐selective Ca/Ti co‐doping for layered Na2/3Ni1/3Mn2/3O2. The surface dielectric coating layer not only suppresses the surface oxygen release but more importantly inhibits the bulk oxygen migration by creating a reverse electric field through dielectric polarization. Meanwhile, the site‐selective doping of oxygen‐affinity Ca into Na layers and Ti into transition metal layers effectively stabilizes the bulk oxygen through modulating the O 2p band center and the oxygen migration barrier. Such a strategy also leads to a reversible structural evolution with a low volume change because of the enhanced structural integrality and improved oxygen rigidity. Because of these synergistic advantages, the designed electrode exhibits greatly suppressed voltage decay and capacity fading upon long‐term cycling. This study affords a promising strategy for regulating the dynamic oxygen evolution to achieve high‐capacity layered cathode materials.
As the analogs of Li-rich materials, Na-rich transition metal layered oxides are promising cathode materials for Na-ion batteries owing to their high theoretical capacity and energy density through cumulative cationic and anionic redox. However, most of the reported Na-rich cathode materials are mainly Ru- and Ir-based layered oxides, which limits the practical application. Herein, we report a Na-rich and Ru-doped O3-type Na1.1Ni0.35Mn0.55O2 cathode to mitigate this issue. By partially substituting Mn4+ with high-electronegativity Ru4+, the structural stability and electrochemical performance of the cathode are both greatly improved. It is validated that the high covalency of Ru-O bonds could harden the structural integrity with rigid oxygen framework upon cycling, leading to enhanced O3-P3 phase transition reversibility. Ru doping also induces an enlarged interlayer spacing to boost the Na+ diffusion kinetics for improved rate capability. In addition, benefiting from the large energetic overlap between Ru 4d and O 2p states, the reinforced Ru-O covalency enables highly reversible Ru4+/Ru5+ redox accompanied with more stable oxygen redox, leading to improved specific capacity and cycling stability over cycling. Our present study provides a promising strategy for designing high-performance Na-rich layered oxide cathode materials through covalency modulation toward practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.