In a K-best detector for multiple-input-multiple-output (MIMO) systems, the value of K needs to be sufficiently large to achieve near-maximum-likelihood (ML) performance. By treating K as a variable that can be adjusted according to a fitting function of some learnable coefficients, an intelligent MIMO detection network based on deep neural networks (DNN) is proposed to reduce complexity of the detection algorithm with little performance degradation. In particular, the proposed intelligent detection algorithm uses meta learning to learn the coefficients of the fitting function for K to circumvent the problem of learning K directly. The idea of network fusion is used to combine the learning results of the meta learning component networks. Simulation results show that the proposed scheme achieves near-ML detection performance while its complexity is close to that of linear detectors. Besides, it also exhibits strong ability of fast training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.