BackgroundComorbid depression is a significant challenge for safety-net primary care systems. Team-based collaborative depression care is effective, but complex system factors in safety-net organizations impede adoption and result in persistent disparities in outcomes. Diabetes-Depression Care-management Adoption Trial (DCAT) evaluated whether depression care could be significantly improved by harnessing information and communication technologies to automate routine screening and monitoring of patient symptoms and treatment adherence and allow timely communication with providers.ObjectiveThe aim of this study was to compare 6-month outcomes of a technology-facilitated care model with a usual care model and a supported care model that involved team-based collaborative depression care for safety-net primary care adult patients with type 2 diabetes.MethodsDCAT is a translational study in collaboration with Los Angeles County Department of Health Services, the second largest safety-net care system in the United States. A comparative effectiveness study with quasi-experimental design was conducted in three groups of adult patients with type 2 diabetes to compare three delivery models: usual care, supported care, and technology-facilitated care. Six-month outcomes included depression and diabetes care measures and patient-reported outcomes. Comparative treatment effects were estimated by linear or logistic regression models that used generalized propensity scores to adjust for sampling bias inherent in the nonrandomized design.ResultsDCAT enrolled 1406 patients (484 in usual care, 480 in supported care, and 442 in technology-facilitated care), most of whom were Hispanic or Latino and female. Compared with usual care, both the supported care and technology-facilitated care groups were associated with significant reduction in depressive symptoms measured by scores on the 9-item Patient Health Questionnaire (least squares estimate, LSE: usual care=6.35, supported care=5.05, technology-facilitated care=5.16; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.02); decreased prevalence of major depression (odds ratio, OR: supported care vs usual care=0.45, technology-facilitated care vs usual care=0.33; P value: supported care vs usual care=.02, technology-facilitated care vs usual care=.007); and reduced functional disability as measured by Sheehan Disability Scale scores (LSE: usual care=3.21, supported care=2.61, technology-facilitated care=2.59; P value: supported care vs usual care=.04, technology-facilitated care vs usual care=.03). Technology-facilitated care was significantly associated with depression remission (technology-facilitated care vs usual care: OR=2.98, P=.04); increased satisfaction with care for emotional problems among depressed patients (LSE: usual care=3.20, technology-facilitated care=3.70; P=.05); reduced total cholesterol level (LSE: usual care=176.40, technology-facilitated care=160.46; P=.01); improved satisfaction with diabetes care (LSE: usual care=4.01, techn...
BackgroundRemote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)–a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care system–tested a fully automated telephonic assessment (ATA) depression monitoring system serving low-income patients with diabetes.ObjectiveThe aim of this study was to determine patient acceptance of ATA calls over time, and to identify factors predicting long-term patient acceptance of ATA calls.MethodsWe conducted two analyses using data from the DCAT technology-facilitated care arm, in which for 12 months the ATA system periodically assessed depression symptoms, monitored treatment adherence, prompted self-care behaviors, and inquired about patients’ needs for provider contact. Patients received assessments at 6, 12, and 18 months using Likert-scale measures of willingness to use ATA calls, preferred mode of reach, perceived ease of use, usefulness, nonintrusiveness, privacy/security, and long-term usefulness. For the first analysis (patient acceptance over time), we computed descriptive statistics of these measures. In the second analysis (predictive factors), we collapsed patients into two groups: those reporting “high” versus “low” willingness to use ATA calls. To compare them, we used independent t tests for continuous variables and Pearson chi-square tests for categorical variables. Next, we jointly entered independent factors found to be significantly associated with 18-month willingness to use ATA calls at the univariate level into a logistic regression model with backward selection to identify predictive factors. We performed a final logistic regression model with the identified significant predictive factors and reported the odds ratio estimates and 95% confidence intervals.ResultsAt 6 and 12 months, respectively, 89.6% (69/77) and 63.7% (49/77) of patients “agreed” or “strongly agreed” that they would be willing to use ATA calls in the future. At 18 months, 51.0% (64/125) of patients perceived ATA calls as useful and 59.7% (46/77) were willing to use the technology. Moreover, in the first 6 months, most patients reported that ATA calls felt private/secure (75.9%, 82/108) and were easy to use (86.2%, 94/109), useful (65.1%, 71/109), and nonintrusive (87.2%, 95/109). Perceived usefulness, however, decreased to 54.1% (59/109) in the second 6 months of the trial. Factors predicting willingness to use ATA calls at the 18-month follow-up were perceived privacy/security and long-term perceived usefulness of ATA calls. No patient characteristics were significant predictors of long-term acceptance.ConclusionsIn the short term, patients are generally accepting of ATA calls for depression monitoring, with ATA call design and th...
IntroductionDepression is a common but often undiagnosed comorbid condition of people with diabetes. Mass screening can detect undiagnosed depression but may require significant resources and time. The objectives of this study were 1) to develop a clinical forecasting model that predicts comorbid depression among patients with diabetes and 2) to evaluate a model-based screening policy that saves resources and time by screening only patients considered as depressed by the clinical forecasting model. MethodsWe trained and validated 4 machine learning models by using data from 2 safety-net clinical trials; we chose the one with the best overall predictive ability as the ultimate model. We compared model-based policy with alternative policies, including mass screening and partial screening, on the basis of depression history or diabetes severity.ResultsLogistic regression had the best overall predictive ability of the 4 models evaluated and was chosen as the ultimate forecasting model. Compared with mass screening, the model-based policy can save approximately 50% to 60% of provider resources and time but will miss identifying about 30% of patients with depression. Partial-screening policy based on depression history alone found only a low rate of depression. Two other heuristic-based partial screening policies identified depression at rates similar to those of the model-based policy but cost more in resources and time.ConclusionThe depression prediction model developed in this study has compelling predictive ability. By adopting the model-based depression screening policy, health care providers can use their resources and time better and increase their efficiency in managing their patients with depression.
An ICT-facilitated depression care (TC) delivery model improved QALYs, DFDs, and medical costs. It was cost-effective compared with SC and dominant compared with UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.