Over 10 billion packages are picked up every day in China. A fundamental task raised in the emerging intelligent logistics systems is the couriers’ package pick-up route prediction, which is beneficial for package dispatching, arrival-time estimation and overdue-risk evaluation, by leveraging the predicted routes to improve those downstream tasks. In the package pick-up scene, the decision-making of a courier is affected by strict spatial-temporal constraints (e.g., package location, promised pick-up time, current time, and courier’s current location). Furthermore, couriers have different decision preferences on various factors (e.g., time factor, distance factor, and balance of both), based on their own perception of the environments and work experience. In this article, we propose a novel model, named DeepRoute+, to predict couriers’ future package pick-up routes according to the couriers’ decision experience and preference learned from the historical behaviors. Specifically, DeepRoute+ consists of three layers: (1) The representation layer produces experience- and preference-aware representations for the unpicked-up packages, in which a decision preference module can dynamically adjust the importance of factors that affects the courier’s decision under the current situation. (2) The transformer encoder layer encodes the representations of packages while considering the spatial-temporal correlations among them. (3) The attention-based decoder layer uses the attention mechanism to generate the whole pick-up route recurrently. Experiments on a real-world logistics dataset demonstrate the state-of-the-art performance of our model.
In intelligent logistics systems, predicting the Estimated Time of Pick-up Arrival (ETPA) of packages is a crucial task, which aims to predict the courier’s arrival time to all the unpicked-up packages at any time. Accurate prediction of ETPA can help systems to alleviate customers’ waiting anxiety and improve their experience. We identify three main challenges of this problem: i) Unlike the travel time estimation problem in other fields like ride-hailing, the ETPA task is distinctively a multi-destination and path-free prediction problem. ii) An intuitive idea for solving ETPA is to predict the pick-up route then the time in two stages. However, it is difficult to accurately and efficiently predict couriers’ future routes in the route prediction step since their behaviors are affected by multiple complex factors. iii) Furthermore, in the time prediction step, the requirement for providing a courier’s all unpicked-up packages’ ETPA at once in real-time makes the problem even more challenging. To tackle the above challenges, we propose RankETPA, which integrates the route inference into the ETPA prediction. First, a learning-based pick-up route predictor is designed to learn the route-ranking strategies of couriers from their massive spatial-temporal behaviors. Then, a spatial-temporal attention-based arrival time predictor is designed for real-time ETPA inference via capturing the spatial-temporal correlations between the unpicked-up packages. Extensive experiments on two real-world datasets and a synthetic dataset demonstrate that RankETPA achieves significant performance improvement against the baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.