Digital light processing (DLP) is currently a cutting-edge technology for desktop projection optical engines. Due to the passive luminescence characteristics, the DLP projection engine needs a few specific illumination optical components for light collimation, homogenization, and color combination, together with a projection lens matching the DLP chip and magnifying the image. In this paper, we propose a design approach that first splits the DLP projection optical engine into individual components for separate design, and then integrates them into a whole system for further verification. For the first step, the collimating lens group is designed for light collection, and the dichroic mirrors are used to fold the light path based on tri-color LED light sources. For the second step, a fly-eye lens and the corresponding relay lens group are designed to achieve uniform illumination on the DMD chip. The third step is to optimize the projection lens group for high-resolution projection display. Based on the design and simulation, the optical efficiency is 63.4% and the uniformity reaches 94.9% on the projection screen. The modulation transfer function (MTF) of the projection lens is higher than 0.4 at 66 lines for the distance of
500
∼
1500
m
m
, and the distortion is lower than 1%. Simulation results show that the total luminous flux is estimated to reach 224.15 lm when the powers of tri-color LEDs are 21 W, 15.5 W, and 25 W, respectively. A projector prototype is built and tested for further verification, which provides a luminous flux of 220.43 lm and uniformity of 90.22%, respectively. The proposed design, demonstrated by both simulation and experiment, exhibits high feasibility and application potential in state-of-the-art commercial projector design.
Micro-LED will probably become the next epochal display technology, which has combined the advantages of liquid crystal display (LCD) and organic light-emitting diode (OLED). Its self-luminous characteristic will greatly compress the volume of the projection optical engine into truly pico-projection level. However, the relevant design and research are still insufficient. In this paper, we design a four-piece sphere lens group with a 5 mm focal length for micro-LED pico-projection, and then a simulation model of self-luminous projection optical engine is built for demonstration. The total length of the projection lens group is only 8.2mm, the modulation transfer function (MTF) is higher than 0.5@66lp/mm, and the distortion is below 1%. The irradiance distribution shows that the light efficiency is 44.9 % and the uniformity reaches 81.3% when the light divergence angle of micro-LEDs is set to 30°. Then, we explore the influence on light efficiency with different light source divergence angles and determine the optimal range of divergence angles. Finally, a R/G/B integrated micro-LED source with blue light and the above red/green quantum-dot color conversion (QDCC) layer is built, proving the feasibility of a full-color pico-projection optical engine with a single-integrated micro-LED chip.
This paper presents a zero-optical-distance mini-LED backlight with cone-shaped light coupling microstructures to achieve an ultra-thin backlight architecture (~0.1 mm thickness) by combining the characteristics of direct-lit and edge-lit backlights. There is no gap between the light guide plate (LGP) and the reflector, as well as between the LGP and the mini-LED embedded in the reflector. The illuminance uniformity and light extraction efficiency (LEE) of the whole structure reach 91.47% and 77.09%, respectively. Nine sub-modules are spliced together to realize 2D local dimming with 0.29% crosstalk. The structure shows high optical performance while reducing the thickness of the backlight module, which is of great significance for the development of mini-LED backlights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.