This paper proposes a collaborative optimization model of car-flow organization for freight trains based on adjacent technical stations to minimize the average dwell time of train cars in a yard. To solve the car-flow organization problems, a priority-based hump sequence, which depends on the cars available in two adjacent technical stations, is adopted. Furthermore, a meta-heuristic algorithm based on the genetic algorithm and the taboo search algorithm is adopted to solve the model, and the introduction of the active scheduling method improves the efficiency of the algorithm. Finally, the model is applied to the car-flow organization problem of two adjacent technical stations, and the results are compared with those from a single technical station without collaboration. The results demonstrate that collaborative car-flow organization between technical stations significantly reduces the average dwell time at the stations, thereby improving the utilization rate of railroad equipment. In addition, the results indicate that the hybrid genetic algorithm can rapidly determine the train hump and marshalling schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.