Single-cell RNA sequencing (scRNA-seq) technology has been a significant direction for single-cell research due to its high accuracy and specificity, as it enables unbiased high-throughput studies with minimal sample sizes. The continuous improvement of scRNA-seq technology has promoted parallel research on single-cell multi-omics. Instead of sequencing bulk cells, analyzing single cells inspires greater discovery power for detecting novel genes without prior knowledge of sequence information and with greater sensitivity when quantifying rare variants and transcripts. However, current analyses of scRNA-seq data are usually carried out with unsupervised methods, which cannot take advantage of the prior distribution and structural features of the data. To solve this problem, we propose the SCAFG (Classifying Single Cell Types Based on an Adaptive Threshold Fusion Graph Convolution Network), a semi-supervised single-cell classification model that adaptively fuses cell-to-cell correlation matrices under various thresholds according to the distribution of cells. We tested the performance of the SCAFG in identifying cell types on diverse real scRNA-seq data; then, we compared the SCAFG with other commonly used semi-supervised algorithms, and it was shown that the SCAFG can classify single-cell data with a higher accuracy.
Clustering analysis is one of the most important technologies for single-cell data mining. It is widely used in the division of different gene sequences, the identification of functional genes, and the detection of new cell types. Although the traditional unsupervised clustering method does not require label data, the distribution of the original data, the setting of hyperparameters, and other factors all affect the effectiveness of the clustering algorithm. While in some cases the type of some cells is known, it is hoped to achieve high accuracy if the prior information about those cells is utilized sufficiently. In this study, we propose SCMAG (a semisupervised single-cell clustering method based on a matrix aggregation graph convolutional neural network) that takes into full consideration the prior information for single-cell data. To evaluate the performance of the proposed semisupervised clustering method, we test on different single-cell datasets and compare with the current semisupervised clustering algorithm in recognizing cell types on various real scRNA-seq data; the results show that it is a more accurate and significant model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.