Developing efficient laccase-mimicking nanozymes via a facile and sustainable strategy is intriguing in environmental sensing and fuel cells. In our work, a MnO/porous carbon (MnO/PC) nanohybrid based on fungus was synthesized via a facile carbonization route. The nanohybrid was found to possess excellent laccase-mimicking activity using 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the substrate. Compared with the natural laccase and reported nanozymes, the MnO/PC nanozyme had much lower Km value. Furthermore, the electrochemical results show that the MnO/PC nanozyme had high electrocatalytic activity toward the oxygen reduction reaction (ORR) when it was modified on the electrode. The hybrid nanozyme could catalyze the four-electron ORR, similar to natural laccase. Moreover, hydroquinone (HQ) induced the reduction of oxABTS and caused the green color to fade, which provided colorimetric detection of HQ. A desirable linear relationship (0–50 μM) and detection limit (0.5 μM) were obtained. Our work opens a simple and sustainable avenue to develop a carbon–metal hybrid nanozyme in environment and energy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.