The industrial artificial fixation of atmospheric N2 to NH3 is carried out using the Haber–Bosch process that is not only energy‐intensive but emits large amounts of greenhouse gas. Electrochemical reduction offers an environmentally benign and sustainable alternative for NH3 synthesis. Although Mo‐dependent nitrogenases and molecular complexes effectively catalyze the N2 fixation at ambient conditions, the development of a Mo‐based nanocatalyst for highly performance electrochemical N2 fixation still remains a key challenge. Here, greatly boosted electrocatalytic N2 reduction to NH3 with excellent selectivity by defect‐rich MoS2 nanoflowers is reported. In 0.1 m Na2SO4, this catalyst attains a high Faradic efficiency of 8.34% and a high NH3 yield of 29.28 µg h−1 mg−1cat. at −0.40 V versus reversible hydrogen electrode, much larger than those of defect‐free counterpart (2.18% and 13.41 µg h−1 mg−1cat.), with strong electrochemical stability. Density functional theory calculations show that the potential determining step has a lower energy barrier (0.60 eV) for defect‐rich catalyst than that of defect‐free one (0.68 eV).
The MXene‐supported single transition metal systems have been reported as promising electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction reaction. Herein, the potential performance of MXene‐based catalysts was explored on nitrogen reduction reaction (NRR). Density functional theory computations are carried out to screen a series of transition metal atoms confined in a vacancy of MXene nanosheet (Mo2TiC2O2). The results reveal that the Zr, Mo, Hf, Ta, W, Re, and Os supported on defective Mo2TiC2O2 layer can significantly promote the NRR process. Among them, Zr‐doped single atom catalyst (Mo2TiC2O2‐ZrSA) possesses the lowest barrier (0.15 eV) of the potential‐determining step, as well as high selectivity over HER competition. To the best of knowledge, 0.15 eV is the lowest barrier of potential‐determining step that has been reported for NRR so far. Besides, the formation energy of Mo2TiC2O2‐ZrSA is much more negative than that of the synthesized Mo2TiC2O2‐PtSA catalyst, suggesting that the experimental preparation of Mo2TiC2O2‐ZrSA is feasible. This work thus predicts an efficient electrocatalyst for the reduction of N2 to NH3 at ambient conditions.
The synthesis of
NH3 is mainly dominated by the traditional
energy-consuming Haber–Bosch process with a mass of CO2 emission. Electrochemical conversion of N2 to
NH3 emerges as a carbon-free process for the sustainable
artificial N2 reduction reaction (NRR), but requires an
efficient and stable electrocatalyst. Here, we report that the Mo2C nanorod serves as an excellent NRR electrocatalyst for artificial
N2 fixation to NH3 with strong durability and
acceptable selectivity under ambient conditions. Such a catalyst shows
a high Faradaic efficiency of 8.13% and NH3 yield of 95.1
μg h–1 mg–1cat at −0.3 V in 0.1 M HCl, surpassing the majority of reported
electrochemical conversion NRR catalysts. Density functional theory
calculation was carried out to gain further insight into the catalytic
mechanism involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.