If combined with renewably generated electricity, electrochemical CO2 reduction (E-CO2R) could be used as a sustainable source of chemicals and fuels. Tandem catalysis approaches are attractive for providing the product selectivity which would be required for commercial application. Here we demonstrate two-step tandem electrocatalytic E-CO2R with efficient conversion of the intermediate species. The catalyst scaffold is Si (100) which is etched to form a textured surface consisting of micron-sized pyramid structures with {111} facets. Two metals are used in the electrocatalytic cascade: Ag is employed to perform two-electron reduction 2 of CO2 to the intermediate CO and Cu performs conversion to more reduced products. Using high angle physical vapor deposition, we form separated, micron-scale areas of the two electrocatalysts on opposite sides of the pyramids, with their relative surface coverages being tunable with deposition angle. Compared to textured scaffolds with blanket Ag and Cu used as controls, bimetallic pyramid tandem catalysts have higher current densities and much lower faradaic efficiencies for CO. These effects are due to efficient conversion of the CO formed on Ag to more reduced products on the Cu. Methane is the main product to be enhanced by the cascade pathway: a bimetallic catalyst with approximately equal coverages of Ag and Cu produces methane with a FE of 62% at -1.1 VRHE, corresponding to a partial current density of 12.7 mA cm -2 . We estimate an intermediate conversion yield for the CO intermediate of 80-90%, which is close to the masstransport limited value predicted by reaction-diffusion simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.