This paper studies the design and implementation of an interactive real-time cloud supervisory control and data acquisition (SCADA) platform. The platform relying on C# and client/server architecture provides full support for data supervision of the cloud control system (CCS). Users are allowed to design supervisory interfaces by dynamically creating and customizing virtual instruments, which are seamlessly integrated into the platform by reconstructing it. Both the scalar and matrix data from different cloud nodes are supported for supervising simultaneously in real-time through receiving data asynchronously. The user can tune the parameters of the CCS online via duplex channels based on the transmission control protocol/internet protocol (IP). To overcome the disturbance of network delays to data display, a stable data and real-time data communication scheme are proposed. All the supervised data can be stored in separate files for further analysis. Finally, the online simulation and experiment are provided to demonstrate the feasibility of the designed SCADA platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.