The purpose of this study is to determine the impact of Covid-19 on business performance of Starbucks. Plenty research of the impact of Covid-19 on the world economy has been done, but this research will focus more on the food and beverage industry, especially one of the famous brands called Starbucks. Qualitative and quantitative research methods such as online research and questionnaires were carried out to ensure the evaluation of the research is fresh, valid and reliable. It is assumed that the impact of Covid-19 has influence the Starbucks financially, economically and socially, which includes the behaviour of consumers towards the company. However, Starbucks was able to remain optimistic and position itself well to overcome the pandemic crisis.
SummaryVerticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely‐cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb‐like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA‐mediated disease‐resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA‐dependent manner, which regulated JA response by relieving inhibited‐MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D‐subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA‐signalling pathway resulted into the loss of RVE2‐mediated disease‐resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine‐tuning JA‐signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Gossypium arboreum (2n=2x=26, A2), the putative progenitor of the At-subgenome of Gossypium hirsutum (2n=4x=52, AD), is a repository of genes of interesting that have been eliminated during evolution/domestication of G. hirsutum. However, its valuable genes remain untapped so far due to species isolation. Here, using a synthetic amphiploid (AADDA2A2) previously reported, we developed a set of 289 G. arboreum chromosome segment introgression lines (ILs) in G. hirsutum by expanding the backcrossing population and through precise marker-assisted selection (MAS) although complex chromosomal structural variations existed between parents which severely hindered introgression. Our results showed the total coverage length of introgressed segments was 1,116.29 Mb, representing 78.48% of the At-subgenome in the G. hirsutum background, with an average segment-length of 8.69 Mb. A total of 81 co- quantitative trait loci (QTLs) for yield and fiber quality were identified by both the RSTEP-ADD-based QTL mapping and the genome-wide association study (GWAS) analysis, with 1.01–24.78% of the phenotypic variance explained. Most QTLs for boll traits showed negative additive effects, but G. arboreum still has the potential to improve boll-number traits in G. hirsutum. Most QTLs for fiber quality showed negative additive effects, implying these QTLs were domesticated in G. hirsutum compared with G. arboreum and, a small quantity of fiber quality QTLs showing positive additive effects, conversely; however, indicates that G. arboreum has the underlying genes of enhancing fiber quality of G. hirsutum. This study provides new insights into the breeding genetic potential of G. arboreum, lays the foundation for further mining favorable genes of interest, and provides guidance for inter-ploidy gene transference from relatives into cultivated crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.