Rapid progress has been made in quantum secure direct communication in recent years. For practical application, it is important to improve the performances, such as the secure information rate and the communication distance. In this paper, we report an elaborate physical system design and protocol with much enhanced performance. This design increased the secrecy capacity greatly by achieving an ultra-low quantum bit error rate of <0.1%, one order of magnitude smaller than that of existing systems. Compared to previous systems, the proposed scheme uses photonic time-bin and phase states, operating at 50 MHz of repetition rate, which can be easily upgraded to over 1 GHz using current on-the-shelf technology. The results of our experimentation demonstrate that the proposed system can tolerate more channel loss, from 5.1 dB, which is about 28.3 km in fiber in the previous scheme, to 18.4 dB, which corresponds to fiber length of 102.2 km. Thus, the experiment shows that intercity quantum secure direct communication through fiber is feasible with present-day technology.
In the field of clock synchronization, the application of frequency-entangled source is a promising direction to improve accuracy and security. In this paper, we analyze the performance of the twin-beam state and the difference-beam state using a practical second-order interference-based scheme. The advantages of the twin-beam state are pointed out especially for the dispersion-free property of HOM interference in a long-distance clock transfer. With the introduction of dispersion-compensated material, our experimental system based on a twin-beam state achieves a clock accuracy at 4 ps with a time offset precision of 1.8 ps over 10 s acquisition time while the time deviation is 0.15 ps over an averaging time of 5500 s in a 22 km-long transmission. These properties exhibit a leading position compared with the current clock synchronization system using the same theoretical scheme and also competitive among the implementations using other second-order interference-based schemes.
Robust, simple, and flexible quantum key distribution (QKD) is vital for realizing practical applications of this technique. Contrary to typical phase-coded QKD schemes, the plug-and-play QKD design requires only one arm-length-insensitive interferometer without active feedback, in which the noise is automatically compensated by the two-way structure. However, there are certain possible loopholes in the typical plug-and-play designs, which require consideration and strict monitoring. This study proposes a new design of theoretically loophole-free plug-and-play QKD scheme with two-way protocol and presents an experimental demonstration of said scheme. The security is analyzed under a collective attack scenario assisted by the decoy state method. The scheme was implemented in a 50.4 km commercial fibre without active feedback. The system showed highly robust performance with an ultra-low error rate and maintained an ultra-high visibility of 0.9947 ± 0.0002 through significant environmental changes over 24 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.