Tumor spread is responsible for most deaths related to cancer. Increasing the accuracy of cancer prognosis is critical to reducing the high mortality rates in cancer patients. Here, we report that the electrostatic potential difference (EPD) between tumor and its paratumor tissue is a prognostic marker for tumor spread. This finding is concluded from the patient-specific EPD values and clinical observation. The electrostatic potential values were measured on tissue cryosections from 51 patients using Kelvin probe force microscopy (KPFM). A total of $44% (15/34) patients of V tumor-paratumor > 0 were featured with tumor spread, whereas only $18% (2/11) patients of V tumor-paratumor < 0 had tumor spread. Next, we found the increased enrichment of cancer stem cells in paratumors with lower electrostatic potentials using immunofluorescence imaging, which suggested the attribution of tumor spread to the galvanotaxis of cancer stem cells (CSCs) toward lower potential. The findings were finally validated in breast and lung spheroid models composed of differentiated cancer cells and cancer stem cells at the ratio of 1:1 and embedded in Matrigel dopped with negative-, neutral-and positive-charged polymers and CSCs prefer to spread out of spheroids to lower electrostatic potential sites. This work may inspire the development of diagnostic and prognostic strategies targeting at tissue EPDs and CSCs for tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.