Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by the global self-attention, various methods constrain the range of attention within a local region to improve its efficiency. Consequently, their receptive fields in a single attention layer are not large enough, resulting in insufficient context modeling. To address this issue, we propose a Pale-Shaped self-Attention (PS-Attention), which performs self-attention within a pale-shaped region. Compared to the global self-attention, PS-Attention can reduce the computation and memory costs significantly. Meanwhile, it can capture richer contextual information under the similar computation complexity with previous local self-attention mechanisms. Based on the PS-Attention, we develop a general Vision Transformer backbone with a hierarchical architecture, named Pale Transformer, which achieves 83.4%, 84.3%, and 84.9% Top-1 accuracy with the model size of 22M, 48M, and 85M respectively for 224x224 ImageNet-1K classification, outperforming the previous Vision Transformer backbones. For downstream tasks, our Pale Transformer backbone performs better than the recent state-of-the-art CSWin Transformer by a large margin on ADE20K semantic segmentation and COCO object detection & instance segmentation. The code will be released on https://github.com/BR-IDL/PaddleViT.
Precise and accurate predictions over boundary areas are essential for semantic segmentation. However, the commonly-used convolutional operators tend to smooth and blur local detail cues, making it difficult for deep models to generate accurate boundary predictions. In this paper, we introduce an operator-level approach to enhance semantic boundary awareness, so as to improve the prediction of the deep semantic segmentation model. Specifically, we first formulate the boundary feature enhancement as an anisotropic diffusion process. We then propose a novel learnable approach called semantic diffusion network (SDN) to approximate the diffusion process, which contains a parameterized semantic difference convolution operator followed by a feature fusion module. Our SDN aims to construct a differentiable mapping from the original feature to the inter-class boundary-enhanced feature. The proposed SDN is an efficient and flexible module that can be easily plugged into existing encoder-decoder segmentation models. Extensive experiments show that our approach can achieve consistent improvements over several typical and state-of-the-art segmentation baseline models on challenging public benchmarks. The code will be released soon.
Estimating feature point correspondence is a common technique in computer vision. A line of recent data-driven approaches utilizing the graph neural networks improved the matching accuracy by a large margin. However, these learning-based methods require a lot of labeled training data, which are expensive to collect. Moreover, we find most methods are sensitive to global transforms, for example, a random rotation. On the contrary, classical geometric approaches are immune to rotational transformation though their performance is generally inferior. To tackle these issues, we propose a new learning-based matching framework, which is designed to be rotationally invariant. The model only takes geometric information as input. It consists of three parts: a graph neural network to generate a high-level local feature, an attention-based module to normalize the rotational transform, and a global feature matching module based on proximal optimization. To justify our approach, we provide a convergence guarantee for the proximal method for graph matching. The overall performance is validated by numerical experiments. In particular, our approach is trained on the synthetic random graphs and then applied to several real-world datasets. The experimental results demonstrate that our method is robust to rotational transform and highlights its strong performance of matching accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.